文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细胞外液流体阻力增强细胞迁移。

Extracellular Hydraulic Resistance Enhances Cell Migration.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.

Institute of NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.

出版信息

Adv Sci (Weinh). 2022 Oct;9(29):e2200927. doi: 10.1002/advs.202200927. Epub 2022 Aug 28.


DOI:10.1002/advs.202200927
PMID:36031406
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9561764/
Abstract

Cells migrating in vivo encounter microenvironments with varying physical properties. One such physical variable is the fluid viscosity surrounding the cell. Increased viscosity is expected to increase the hydraulic resistance experienced by the cell and decrease cell speed. The authors demonstrate that contrary to this expected result, cells migrate faster in high viscosity media on 2-dimensional substrates. Both actin dynamics and water dynamics driven by ion channel activity are examined. Results show that cells increase in area in high viscosity and actomyosin dynamics remain similar. Inhibiting ion channel fluxes in high viscosity media results in a large reduction in cell speed, suggesting that water flux contributes to the observed speed increase. Moreover, inhibiting actin-dependent vesicular trafficking that transports ion channels to the cell boundary changes ion channel spatial positioning and reduces cell speed in high viscosity media. Cells also display altered Ca activity in high viscosity media, and when cytoplasmic Ca is sequestered, cell speed reduction and altered ion channel positioning are observed. Taken together, it is found that the cytoplasmic actin-phase and water-phase are coupled to drive cell migration in high viscosity media, in agreement with physical modeling that also predicts the observed cell speedup in high viscosity environments.

摘要

细胞在体内迁移时会遇到具有不同物理特性的微环境。其中一个物理变量是围绕细胞的流体粘度。人们预计,粘度的增加会增加细胞所经历的液压阻力,并降低细胞的速度。作者证明,与这一预期结果相反,细胞在二维基质上的高粘度介质中迁移得更快。研究了由离子通道活性驱动的肌动球蛋白动力学和水动力学。结果表明,细胞在高粘度下面积增大,肌动球蛋白动力学保持相似。在高粘度介质中抑制离子通道通量会导致细胞速度大幅降低,这表明水通量有助于观察到的速度增加。此外,抑制将离子通道运输到细胞边界的肌动蛋白依赖性囊泡运输会改变离子通道的空间定位,并降低高粘度介质中的细胞速度。细胞在高粘度介质中还显示出改变的 Ca 活性,并且当细胞质 Ca 被隔离时,观察到细胞速度降低和离子通道定位改变。总之,发现细胞质肌动球蛋白相和水相耦合以在高粘度介质中驱动细胞迁移,这与物理模型一致,该模型也预测了在高粘度环境中观察到的细胞加速。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/5968e5650839/ADVS-9-2200927-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/90d65bc5f339/ADVS-9-2200927-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/ddd1a0416a67/ADVS-9-2200927-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/568a36cac6e6/ADVS-9-2200927-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/28287174b469/ADVS-9-2200927-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/272cd3cf10d7/ADVS-9-2200927-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/5968e5650839/ADVS-9-2200927-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/90d65bc5f339/ADVS-9-2200927-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/ddd1a0416a67/ADVS-9-2200927-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/568a36cac6e6/ADVS-9-2200927-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/28287174b469/ADVS-9-2200927-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/272cd3cf10d7/ADVS-9-2200927-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4b/9561764/5968e5650839/ADVS-9-2200927-g001.jpg

相似文献

[1]
Extracellular Hydraulic Resistance Enhances Cell Migration.

Adv Sci (Weinh). 2022-10

[2]
Flow-Driven Cell Migration under External Electric Fields.

Phys Rev Lett. 2015-12-31

[3]
Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet.

Proc Natl Acad Sci U S A. 2022-7-26

[4]
Extracellular fluid viscosity enhances cell migration and cancer dissemination.

Nature. 2022-11

[5]
On the energy efficiency of cell migration in diverse physical environments.

Proc Natl Acad Sci U S A. 2019-11-12

[6]
Going with the Flow: Water Flux and Cell Shape during Cytokinesis.

Biophys J. 2017-12-5

[7]
Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.

J Biomech. 2018-1-23

[8]
Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance.

Biophys J. 2018-6-19

[9]
Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

Neural Dev. 2014-12-2

[10]
Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration.

Biomaterials. 2018-6-2

引用本文的文献

[1]
Cytoskeletal activation of NHE1 regulates mechanosensitive cell volume adaptation and proliferation.

Cell Rep. 2024-12-24

[2]
Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues.

Cell Rep Methods. 2024-9-16

[3]
Confinement controls the directional cell responses to fluid forces.

Cell Rep. 2024-9-24

[4]
Subcellular mechano-regulation of cell migration in confined extracellular microenvironment.

Biophys Rev (Melville). 2023-12-29

[5]
The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression.

Cancer Metastasis Rev. 2024-6

[6]
A mechanism-based theory of cellular and tissue plasticity.

Proc Natl Acad Sci U S A. 2023-10-31

[7]
On the role of myosin-induced actin depolymerization during cell migration.

Mol Biol Cell. 2023-5-15

[8]
Multiple particle tracking (MPT) using PEGylated nanoparticles reveals heterogeneity within murine lymph nodes and between lymph nodes at different locations.

Biomater Sci. 2022-12-6

[9]
Hydrogen, Bicarbonate, and Their Associated Exchangers in Cell Volume Regulation.

Front Cell Dev Biol. 2021-6-24

本文引用的文献

[1]
Kidney epithelial cells are active mechano-biological fluid pumps.

Nat Commun. 2022-4-28

[2]
The importance of water and hydraulic pressure in cell dynamics.

J Cell Sci. 2020-10-21

[3]
On the energy efficiency of cell migration in diverse physical environments.

Proc Natl Acad Sci U S A. 2019-11-12

[4]
Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca flickers.

Commun Biol. 2019-8-7

[5]
Cell sensing and decision-making in confinement: The role of TRPM7 in a tug of war between hydraulic pressure and cross-sectional area.

Sci Adv. 2019-7-24

[6]
Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration.

Dev Cell. 2019-4-11

[7]
Myosin II governs intracellular pressure and traction by distinct tropomyosin-dependent mechanisms.

Mol Biol Cell. 2019-3-13

[8]
Response of collagen matrices under pressure and hydraulic resistance in hydrogels.

Soft Matter. 2019-3-20

[9]
Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo.

Traffic. 2018-9-10

[10]
Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode.

Dev Cell. 2018-6-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索