Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
Sci Adv. 2019 Jul 24;5(7):eaaw7243. doi: 10.1126/sciadv.aaw7243. eCollection 2019 Jul.
How cells sense hydraulic pressure and make directional choices in confinement remains elusive. Using trifurcating Ψ-like microchannels of different hydraulic resistances and cross-sectional areas, we discovered that the TRPM7 ion channel is the critical mechanosensor, which directs decision-making of blebbing cells toward channels of lower hydraulic resistance irrespective of their cross-sectional areas. Hydraulic pressure-mediated TRPM7 activation triggers calcium influx and supports a thicker cortical actin meshwork containing an elevated density of myosin-IIA. Cortical actomyosin shields cells against external forces and preferentially directs cell entrance in low resistance channels. Inhibition of TRPM7 function or actomyosin contractility renders cells unable to sense different resistances and alters the decision-making pattern to cross-sectional area-based partition. Cell distribution in microchannels is captured by a mathematical model based on the maximum entropy principle using cortical actin as a key variable. This study demonstrates the unique role of TRPM7 in controlling decision-making and navigating migration in complex microenvironments.
细胞如何感知液压并在受限环境中做出定向选择仍然难以捉摸。使用分叉的具有不同水力阻力和横截面积的 Ψ 样微通道,我们发现 TRPM7 离子通道是关键的机械感受器,它指导起泡细胞的决策朝着水力阻力较低的通道进行,而与横截面积无关。液压介导的 TRPM7 激活触发钙内流,并支持含有更高密度肌球蛋白-IIA 的更厚皮质肌动蛋白网格。皮质肌动球蛋白保护细胞免受外力,并优先将细胞导入低阻力通道。TRPM7 功能或肌动球蛋白收缩性的抑制使细胞无法感知不同的阻力,并改变决策模式以基于横截面积进行分区。使用皮质肌动蛋白作为关键变量,基于最大熵原理的数学模型可以捕获微通道中的细胞分布。这项研究表明 TRPM7 在控制决策和在复杂微环境中导航迁移方面具有独特作用。