Suppr超能文献

基于CT的影像组学在预测根治性治疗的III期非小细胞肺癌患者脑转移发生中的附加值研究。

Investigation of the added value of CT-based radiomics in predicting the development of brain metastases in patients with radically treated stage III NSCLC.

作者信息

Keek Simon A, Kayan Esma, Chatterjee Avishek, Belderbos José S A, Bootsma Gerben, van den Borne Ben, Dingemans Anne-Marie C, Gietema Hester A, Groen Harry J M, Herder Judith, Pitz Cordula, Praag John, De Ruysscher Dirk, Schoenmaekers Janna, Smit Hans J M, Stigt Jos, Westenend Marcel, Zeng Haiyan, Woodruff Henry C, Lambin Philippe, Hendriks Lizza

机构信息

The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

出版信息

Ther Adv Med Oncol. 2022 Aug 22;14:17588359221116605. doi: 10.1177/17588359221116605. eCollection 2022.

Abstract

INTRODUCTION

Despite radical intent therapy for patients with stage III non-small-cell lung cancer (NSCLC), cumulative incidence of brain metastases (BM) reaches 30%. Current risk stratification methods fail to accurately identify these patients. As radiomics features have been shown to have predictive value, this study aims to develop a model combining clinical risk factors with radiomics features for BM development in patients with radically treated stage III NSCLC.

METHODS

Retrospective analysis of two prospective multicentre studies. Inclusion criteria: adequately staged [F-fluorodeoxyglucose positron emission tomography-computed tomography (18-FDG-PET-CT), contrast-enhanced chest CT, contrast-enhanced brain magnetic resonance imaging/CT] and radically treated stage III NSCLC, exclusion criteria: second primary within 2 years of NSCLC diagnosis and prior prophylactic cranial irradiation. Primary endpoint was BM development any time during follow-up (FU). CT-based radiomics features ( = 530) were extracted from the primary lung tumour on 18-FDG-PET-CT images, and a list of clinical features ( = 8) was collected. Univariate feature selection based on the area under the curve (AUC) of the receiver operating characteristic was performed to identify relevant features. Generalized linear models were trained using the selected features, and multivariate predictive performance was assessed through the AUC.

RESULTS

In total, 219 patients were eligible for analysis. Median FU was 59.4 months for the training cohort and 67.3 months for the validation cohort; 21 (15%) and 17 (22%) patients developed BM in the training and validation cohort, respectively. Two relevant clinical features (age and adenocarcinoma histology) and four relevant radiomics features were identified as predictive. The clinical model yielded the highest AUC value of 0.71 (95% CI: 0.58-0.84), better than radiomics or a combination of clinical parameters and radiomics (both an AUC of 0.62, 95% CIs of 0.47-076 and 0.48-0.76, respectively).

CONCLUSION

CT-based radiomics features of primary NSCLC in the current setup could not improve on a model based on clinical predictors (age and adenocarcinoma histology) of BM development in radically treated stage III NSCLC patients.

摘要

引言

尽管对Ⅲ期非小细胞肺癌(NSCLC)患者采用了根治性意向性治疗,但脑转移(BM)的累积发生率仍达30%。目前的风险分层方法无法准确识别这些患者。由于已证明放射组学特征具有预测价值,本研究旨在建立一个将临床风险因素与放射组学特征相结合的模型,用于预测接受根治性治疗的Ⅲ期NSCLC患者发生BM的情况。

方法

对两项前瞻性多中心研究进行回顾性分析。纳入标准:分期充分[氟脱氧葡萄糖正电子发射断层扫描-计算机断层扫描(18-FDG-PET-CT)、增强胸部CT、增强脑磁共振成像/CT]且接受根治性治疗的Ⅲ期NSCLC,排除标准:NSCLC诊断后2年内出现第二原发性肿瘤以及既往接受过预防性颅脑照射。主要终点是随访(FU)期间任何时间发生BM。从18-FDG-PET-CT图像上的原发性肺肿瘤中提取基于CT的放射组学特征(n = 530),并收集一份临床特征列表(n = 8)。基于受试者工作特征曲线下面积(AUC)进行单变量特征选择,以识别相关特征。使用选定的特征训练广义线性模型,并通过AUC评估多变量预测性能。

结果

共有219例患者符合分析条件。训练队列的中位FU为59.4个月,验证队列的中位FU为67.3个月;训练队列和验证队列中分别有21例(15%)和17例(22%)患者发生BM。确定了两个相关临床特征(年龄和腺癌组织学)和四个相关放射组学特征具有预测性。临床模型的AUC值最高,为0.71(95%CI:0.58 - 0.84),优于放射组学或临床参数与放射组学的组合(两者的AUC均为0.62,95%CI分别为0.47 - 0.76和0.48 - 0.76)。

结论

在当前设置下,原发性NSCLC基于CT的放射组学特征在预测接受根治性治疗的Ⅲ期NSCLC患者发生BM方面,无法优于基于临床预测因素(年龄和腺癌组织学)的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/524f/9403451/449d22942c76/10.1177_17588359221116605-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验