Zhang Min, Bao Yiming, Rui Weiwei, Shangguan Chengfang, Liu Jiajun, Xu Jianwei, Lin Xiaozhu, Zhang Miao, Huang Xinyun, Zhou Yilei, Qu Qian, Meng Hongping, Qian Dahong, Li Biao
Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.
Front Oncol. 2020 Oct 8;10:568857. doi: 10.3389/fonc.2020.568857. eCollection 2020.
To assess the performance of pretreatment F-fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) radiomics features for predicting EGFR mutation status in patients with non-small cell lung cancer (NSCLC).
We enrolled total 173 patients with histologically proven NSCLC who underwent preoperative F-FDG PET/CT. Tumor tissues of all patients were tested for EGFR mutation status. A PET/CT radiomics prediction model was established through multi-step feature selection. The predictive performances of radiomics model, clinical features and conventional PET-derived semi-quantitative parameters were compared using receiver operating curves (ROCs) analysis.
Four CT and two PET radiomics features were finally selected to build the PET/CT radiomics model. Compared with area under the ROC curve (AUC) equal to 0.664, 0.683 and 0.662 for clinical features, maximum standardized uptake values (SUV) and total lesion glycolysis (TLG), the PET/CT radiomics model showed better performance to discriminate between EGFR positive and negative mutations with the AUC of 0.769 and the accuracy of 67.06% after 10-fold cross-validation. The combined model, based on the PET/CT radiomics and clinical feature (gender) further improved the AUC to 0.827 and the accuracy to 75.29%. Only one PET radiomics feature demonstrated significant but low predictive ability (AUC = 0.661) for differentiating 19 Del from 21 L858R mutation subtypes.
EGFR mutations status in patients with NSCLC could be well predicted by the combined model based on F-FDG PET/CT radiomics and clinical feature, providing an alternative useful method for the selection of targeted therapy.
评估治疗前氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)影像组学特征对预测非小细胞肺癌(NSCLC)患者表皮生长因子受体(EGFR)突变状态的性能。
我们纳入了总共173例经组织学证实为NSCLC且术前行F-FDG PET/CT检查的患者。对所有患者的肿瘤组织进行EGFR突变状态检测。通过多步骤特征选择建立PET/CT影像组学预测模型。使用受试者工作特征曲线(ROC)分析比较影像组学模型、临床特征和传统PET衍生半定量参数的预测性能。
最终选择了4个CT和2个PET影像组学特征来构建PET/CT影像组学模型。与临床特征、最大标准化摄取值(SUV)和总病灶糖酵解(TLG)的ROC曲线下面积(AUC)分别为0.664、0.683和0.662相比,PET/CT影像组学模型在区分EGFR阳性和阴性突变方面表现更佳,10倍交叉验证后的AUC为0.769,准确率为67.06%。基于PET/CT影像组学和临床特征(性别)的联合模型进一步将AUC提高到0.827,准确率提高到75.29%。只有一个PET影像组学特征在区分19外显子缺失(Del)和21外显子L858R突变亚型方面显示出显著但较低的预测能力(AUC = 0.661)。
基于F-FDG PET/CT影像组学和临床特征的联合模型可以很好地预测NSCLC患者的EGFR突变状态,为靶向治疗的选择提供了一种有用的替代方法。