Suppr超能文献

抗逆转录病毒治疗(HAART)下 HIV 感染患者药物不依从和治疗失败时间的预测因素:联合模型和单独模型的比较。

Predictors of non-adherence to medication and time to default from treatment on HIV infected patients under HAART: a comparison of joint and separate models.

机构信息

Department of Statistics, Debre Tabor University Debre Tabor, Ethiopia.

Department of Statistics, Bahir Dar University Bahir Dar, Ethiopia.

出版信息

Afr Health Sci. 2022 Mar;22(1):443-455. doi: 10.4314/ahs.v22i1.53.

Abstract

BACKGROUND

Ethiopia is one of the Sub-Saharan Africa with the highest number of people living with HIV. Amhara region is one of the regions in the country in which many people are under medication. The main objective of this research was to identify significant predictors of non-adherence to medication and time to default from treatment for HIV infected patients under HAART.

METHODS

A retrospective secondary data were obtained from a random sample of 220 HIV patients under HAART. Separate and joint modeling approaches were conducted in data analysis. Joint modeling was conducted for analysis of non-adherence to medication and the time to default from treatment. In the joint model, a GLMM and Cox PH sub-models were fit together for non-adherence to medication and time to default from treatment.

RESULTS

The significant predictors for the variables of interests in current investigation were length of visiting time(AOR of 95% CI=0.866 (0.752, 0.997), female patients(AOR of 95% CI= 0.219 (0.067, 0.717)), patients disclosed the disease(AOR of 95% CI= 0.353 (0.194,0.641)), patients who got social support(AOR of 95% CI= 0.252 (0.194,0.631)), patients living with parter(AOR of 95% CI=0.188 (0.042,0.844)), patients with owner of cell phone(AOR of 95%CI= 0.272 (0.081,0.916)), urban HIV patients(AOR of 94%CI= 0.238 (0.078,0.722)), patients with working functional status(AOR of 95% CI= 0.234 (0.079,0.692)), patients with normal BMI(AOR of 95% CI=0.921 (0.881, 0.963)), patients with high baseline CD4 cell count(AOR of 95% CI=0.873 (0.552, 0.997)).

CONCLUSION

Some groups of HIV patients were non-adherent to medication and defaulted from treatment. Health related education is recommended for non-adherent patients to be adherent for the prescribed medication and live long in the treatment.

摘要

背景

埃塞俄比亚是撒哈拉以南非洲艾滋病毒感染者人数最多的国家之一。阿姆哈拉地区是该国许多人正在接受药物治疗的地区之一。本研究的主要目的是确定影响抗逆转录病毒治疗(HAART)下 HIV 感染者药物不依从和治疗中断时间的显著预测因素。

方法

从接受 HAART 的 220 名随机 HIV 患者中获得回顾性二次数据。在数据分析中分别和联合使用建模方法。联合建模用于分析药物不依从和治疗中断时间。在联合模型中,使用广义线性混合模型(GLMM)和 Cox PH 子模型共同拟合药物不依从和治疗中断时间。

结果

目前研究中感兴趣变量的显著预测因素包括:就诊时间长度(95%CI 的比值比(OR)=0.866(0.752,0.997))、女性患者(95%CI 的 OR=0.219(0.067,0.717))、患者公开病情(95%CI 的 OR=0.353(0.194,0.641))、获得社会支持(95%CI 的 OR=0.252(0.194,0.631))、与伴侣共同生活(95%CI 的 OR=0.188(0.042,0.844))、拥有手机(95%CI 的 OR=0.272(0.081,0.916))、城市 HIV 患者(95%CI 的 OR=0.238(0.078,0.722))、具有工作功能状态(95%CI 的 OR=0.234(0.079,0.692))、正常 BMI(95%CI 的 OR=0.921(0.881,0.963))、高基线 CD4 细胞计数(95%CI 的 OR=0.873(0.552,0.997))。

结论

一些 HIV 患者群体药物不依从且治疗中断。建议对不依从的患者进行健康相关教育,使其遵守规定的药物治疗方案并长期接受治疗。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验