Suppr超能文献

神经生物学上逼真的神经网络能够实现跨尺度的神经动力学建模。

Neurobiologically realistic neural network enables cross-scale modeling of neural dynamics.

机构信息

Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.

Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.

出版信息

Sci Rep. 2024 Mar 1;14(1):5145. doi: 10.1038/s41598-024-54593-w.

Abstract

Fundamental principles underlying computation in multi-scale brain networks illustrate how multiple brain areas and their coordinated activity give rise to complex cognitive functions. Whereas brain activity has been studied at the micro- to meso-scale to reveal the connections between the dynamical patterns and the behaviors, investigations of neural population dynamics are mainly limited to single-scale analysis. Our goal is to develop a cross-scale dynamical model for the collective activity of neuronal populations. Here we introduce a bio-inspired deep learning approach, termed NeuroBondGraph Network (NBGNet), to capture cross-scale dynamics that can infer and map the neural data from multiple scales. Our model not only exhibits more than an 11-fold improvement in reconstruction accuracy, but also predicts synchronous neural activity and preserves correlated low-dimensional latent dynamics. We also show that the NBGNet robustly predicts held-out data across a long time scale (2 weeks) without retraining. We further validate the effective connectivity defined from our model by demonstrating that neural connectivity during motor behaviour agrees with the established neuroanatomical hierarchy of motor control in the literature. The NBGNet approach opens the door to revealing a comprehensive understanding of brain computation, where network mechanisms of multi-scale activity are critical.

摘要

多尺度脑网络计算的基本原理说明了多个脑区及其协调活动如何产生复杂的认知功能。虽然已经在微观到中观尺度上研究了大脑活动,以揭示动力模式与行为之间的联系,但对神经群体动力学的研究主要限于单尺度分析。我们的目标是开发一种用于神经元群体集体活动的跨尺度动力学模型。在这里,我们引入了一种受生物启发的深度学习方法,称为神经键图网络(NeuroBondGraph Network,NBGNet),以捕获能够从多个尺度推断和映射神经数据的跨尺度动力学。我们的模型不仅在重建准确性方面提高了 11 倍以上,而且还可以预测同步的神经活动并保留相关的低维潜在动力学。我们还表明,NBGNet 可以在没有重新训练的情况下,在很长的时间尺度(2 周)内稳健地预测保留数据。我们还通过证明运动行为期间的神经连接与文献中已建立的运动控制神经解剖学层次结构一致,验证了我们模型中定义的有效连接。NBGNet 方法为揭示大脑计算的全面理解打开了大门,其中多尺度活动的网络机制是关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071f/10907713/aa1556456629/41598_2024_54593_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验