Suppr超能文献

使用机器学习表征蛛网膜下腔出血后院内死亡风险:一项回顾性研究

Characterizing Risk of In-Hospital Mortality Following Subarachnoid Hemorrhage Using Machine Learning: A Retrospective Study.

作者信息

Deng Jiewen, He Zhaohui

机构信息

Department of Neurosugery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Surg. 2022 Jun 8;9:891984. doi: 10.3389/fsurg.2022.891984. eCollection 2022.

Abstract

BACKGROUND

Subarachnoid hemorrhage has a high rate of disability and mortality, and the ability to use existing disease severity scores to estimate the risk of adverse outcomes is limited. Collect relevant information of patients during hospitalization to develop more accurate risk prediction models, using logistic regression (LR) and machine learning (ML) technologies, combined with biochemical information.

METHODS

Patient-level data were extracted from MIMIC-IV data. The primary outcome was in-hospital mortality. The models were trained and tested on a data set (ratio 70:30) including age and key past medical history. The recursive feature elimination (RFE) algorithm was used to screen the characteristic variables; then, the ML algorithm was used to analyze and establish the prediction model, and the validation set was used to further verify the effectiveness of the model.

RESULT

Of the 1,787 patients included in the mimic database, a total of 379 died during hospitalization. Recursive feature abstraction (RFE) selected 20 variables. After simplification, we determined 10 features, including the Glasgow coma score (GCS), glucose, sodium, chloride, SPO, bicarbonate, temperature, white blood cell (WBC), heparin use, and sepsis-related organ failure assessment (SOFA) score. The validation set and Delong test showed that the simplified RF model has a high AUC of 0.949, which is not significantly different from the best model. Furthermore, in the DCA curve, the simplified GBM model has relatively higher net benefits. In the subgroup analysis of non-traumatic subarachnoid hemorrhage, the simplified GBM model has a high AUC of 0.955 and relatively higher net benefits.

CONCLUSIONS

ML approaches significantly enhance predictive discrimination for mortality following subarachnoid hemorrhage compared to existing illness severity scores and LR. The discriminative ability of these ML models requires validation in external cohorts to establish generalizability.

摘要

背景

蛛网膜下腔出血具有较高的致残率和死亡率,利用现有疾病严重程度评分来估计不良结局风险的能力有限。收集患者住院期间的相关信息,运用逻辑回归(LR)和机器学习(ML)技术,并结合生化信息,以开发更准确的风险预测模型。

方法

从MIMIC-IV数据中提取患者层面的数据。主要结局为住院死亡率。在包含年龄和关键既往病史的数据集(比例为70:30)上对模型进行训练和测试。使用递归特征消除(RFE)算法筛选特征变量;然后,运用ML算法分析并建立预测模型,使用验证集进一步验证模型的有效性。

结果

在纳入模拟数据库的1787例患者中,共有379例在住院期间死亡。递归特征提取(RFE)选择了20个变量。经过简化,我们确定了10个特征,包括格拉斯哥昏迷评分(GCS)、葡萄糖、钠、氯、血氧饱和度(SPO)、碳酸氢盐、体温、白细胞(WBC)、肝素使用情况以及脓毒症相关器官功能衰竭评估(SOFA)评分。验证集和德龙检验表明,简化后的随机森林(RF)模型具有0.949的高曲线下面积(AUC),与最佳模型无显著差异。此外,在决策曲线分析(DCA)中,简化后的梯度提升机(GBM)模型具有相对较高的净效益。在非创伤性蛛网膜下腔出血的亚组分析中,简化后的GBM模型具有0.955的高AUC和相对较高的净效益。

结论

与现有疾病严重程度评分和LR相比,ML方法显著提高了蛛网膜下腔出血后死亡率的预测辨别能力。这些ML模型的辨别能力需要在外部队列中进行验证以确定其普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14fe/9407038/4385034676f0/fsurg-09-891984-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验