Suppr超能文献

一种用于评估子痫前期分类的可解释模糊框架。

An Explainable Fuzzy Framework for Assessing Preeclampsia Classification.

作者信息

Salinas Matías, Velandia Daira, Mayeta-Revilla Leondry, Bertini Ayleen, Querales Marvin, Pardo Fabian, Salas Rodrigo

机构信息

PhD Program in Health Sciences and Engineering, Universidad de Valparaíso, Valparaíso 2540064, Chile.

Biomedical Engineering School, Faculty of Engineering, Universidad de Valparaíso, Valparaíso 2362905, Chile.

出版信息

Biomedicines. 2025 Jun 16;13(6):1483. doi: 10.3390/biomedicines13061483.

Abstract

Preeclampsia remains a leading cause of maternal morbidity worldwide. There is a critical need for predictive systems that not only perform accurately but also provide interpretable insights for clinical decision-making. This work introduces SK-MOEFS, an explainable framework based on fuzzy logic and multi-objective evolutionary optimization, designed to classify preeclampsia risk while generating clinically interpretable rules. The model integrates fuzzy decision trees with a genetic algorithm to identify a compact and relevant set of rules, optimized for both accuracy and interpretability. The system was trained and evaluated on third-trimester pregnancy data from a publicly available, multi-ethnic cohort comprising 574 individuals. All processes, including preprocessing, training, and evaluation, were conducted using open-source tools, ensuring reproducibility. SK-MOEFS achieved 91% classification accuracy, an AUC of 0.89, and a recall of 0.88-outperforming other standard interpretable models while maintaining high transparency. The model emphasizes minimizing false negatives, which is critical in clinical risk stratification for preeclampsia. Beyond predictive performance, SK-MOEFS offers a rule translation and defuzzification layer that outputs probabilistic interpretations in natural language, enhancing its suitability for clinical use. This framework provides an effective bridge between algorithmic inference and human clinical judgment, supporting transparent and reliable decision-making in maternal care.

摘要

子痫前期仍然是全球孕产妇发病的主要原因。迫切需要一种预测系统,该系统不仅要表现准确,还要为临床决策提供可解释的见解。这项工作引入了SK-MOEFS,这是一个基于模糊逻辑和多目标进化优化的可解释框架,旨在在生成临床可解释规则的同时对子痫前期风险进行分类。该模型将模糊决策树与遗传算法相结合,以识别一组紧凑且相关的规则,这些规则针对准确性和可解释性进行了优化。该系统在来自一个包含多民族的公开可用队列的574名个体的孕晚期妊娠数据上进行了训练和评估。所有过程,包括预处理、训练和评估,均使用开源工具进行,以确保可重复性。SK-MOEFS实现了91%的分类准确率、0.89的AUC和0.88的召回率,在保持高透明度的同时优于其他标准可解释模型。该模型强调将假阴性最小化,这在子痫前期的临床风险分层中至关重要。除了预测性能外,SK-MOEFS还提供了一个规则翻译和去模糊化层,以自然语言输出概率解释,增强了其在临床中的适用性。该框架在算法推理和人类临床判断之间架起了一座有效的桥梁,支持孕产妇护理中的透明和可靠决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b6/12190940/649cc8c6c256/biomedicines-13-01483-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验