Suppr超能文献

利用除强度特征之外的基于光学相干断层扫描(OCT)的特征,通过深度学习增强对Stargardt萎缩的预测。

Using Ensemble OCT-Derived Features beyond Intensity Features for Enhanced Stargardt Atrophy Prediction with Deep Learning.

作者信息

Mishra Zubin, Wang Ziyuan, Sadda SriniVas R, Hu Zhihong

机构信息

Doheny Image Analysis Laboratory, Doheny Eye Institute, Pasadena, CA 91103, USA.

School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Appl Sci (Basel). 2023 Jul 2;13(14). doi: 10.3390/app13148555. Epub 2023 Jul 24.

Abstract

Stargardt disease is the most common form of juvenile-onset macular dystrophy. Spectral-domain optical coherence tomography (SD-OCT) imaging provides an opportunity to directly measure changes to retinal layers due to Stargardt atrophy. Generally, atrophy segmentation and prediction can be conducted using mean intensity feature maps generated from the relevant retinal layers. In this paper, we report an approach using advanced OCT-derived features to augment and enhance data beyond the commonly used mean intensity features for enhanced prediction of Stargardt atrophy with an ensemble deep learning neural network. With all the relevant retinal layers, this neural network architecture achieves a median Dice coefficient of 0.830 for six-month predictions and 0.828 for twelve-month predictions, showing a significant improvement over a neural network using only mean intensity, which achieved Dice coefficients of 0.744 and 0.762 for six-month and twelve-month predictions, respectively. When using feature maps generated from different layers of the retina, significant differences in performance were observed. This study shows promising results for using multiple OCT-derived features beyond intensity for assessing the prognosis of Stargardt disease and quantifying the rate of progression.

摘要

斯塔加特病是青少年黄斑营养不良最常见的形式。光谱域光学相干断层扫描(SD-OCT)成像为直接测量斯塔加特萎缩引起的视网膜层变化提供了机会。一般来说,萎缩分割和预测可以使用从相关视网膜层生成的平均强度特征图来进行。在本文中,我们报告了一种方法,即使用先进的OCT衍生特征来增强和扩充数据,超越常用的平均强度特征,以通过集成深度学习神经网络增强对斯塔加特萎缩的预测。利用所有相关视网膜层,该神经网络架构在六个月预测中的中位骰子系数为0.830,在十二个月预测中的中位骰子系数为0.828,与仅使用平均强度的神经网络相比有显著改进,后者在六个月和十二个月预测中的骰子系数分别为0.744和0.762。当使用从视网膜不同层生成的特征图时,观察到性能存在显著差异。这项研究显示了使用强度以外的多个OCT衍生特征来评估斯塔加特病预后和量化进展速率的前景良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5739/11288976/7cc24db38d4d/nihms-1987998-f0001.jpg

相似文献

2
Recurrent and Concurrent Prediction of Longitudinal Progression of Stargardt Atrophy and Geographic Atrophy.
medRxiv. 2024 Feb 13:2024.02.11.24302670. doi: 10.1101/2024.02.11.24302670.
3
Automatic Segmentation in Multiple OCT Layers For Stargardt Disease Characterization Via Deep Learning.
Transl Vis Sci Technol. 2021 Apr 1;10(4):24. doi: 10.1167/tvst.10.4.24.
4
Artificial intelligence for assessment of Stargardt macular atrophy.
Neural Regen Res. 2022 Dec;17(12):2632-2636. doi: 10.4103/1673-5374.339477.
6
Impact of segmentation density on spectral domain optical coherence tomography assessment in Stargardt disease.
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):549-556. doi: 10.1007/s00417-018-04229-3. Epub 2019 Jan 6.
9
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
Comput Methods Programs Biomed. 2019 Sep;178:181-189. doi: 10.1016/j.cmpb.2019.06.016. Epub 2019 Jun 14.
10
Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
Transl Vis Sci Technol. 2020 Oct 13;9(11):12. doi: 10.1167/tvst.9.11.12. eCollection 2020 Oct.

本文引用的文献

1
ARA-net: an attention-aware retinal atrophy segmentation network coping with fundus images.
Front Neurosci. 2023 Apr 27;17:1174937. doi: 10.3389/fnins.2023.1174937. eCollection 2023.
3
Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.
Ophthalmol Retina. 2023 Mar;7(3):243-252. doi: 10.1016/j.oret.2022.08.018. Epub 2022 Aug 28.
5
Automated Segmentation of Autofluorescence Lesions in Stargardt Disease.
Ophthalmol Retina. 2022 Nov;6(11):1098-1104. doi: 10.1016/j.oret.2022.05.020. Epub 2022 May 27.
6
Automatic Segmentation in Multiple OCT Layers For Stargardt Disease Characterization Via Deep Learning.
Transl Vis Sci Technol. 2021 Apr 1;10(4):24. doi: 10.1167/tvst.10.4.24.
7
An integrated time adaptive geographic atrophy prediction model for SD-OCT images.
Med Image Anal. 2021 Feb;68:101893. doi: 10.1016/j.media.2020.101893. Epub 2020 Nov 12.
8
Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
Transl Vis Sci Technol. 2020 Oct 13;9(11):12. doi: 10.1167/tvst.9.11.12. eCollection 2020 Oct.
9
Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease.
Sci Rep. 2020 Oct 5;10(1):16491. doi: 10.1038/s41598-020-73339-y.
10
Hyperspectral Imaging and the Retina: Worth the Wave?
Transl Vis Sci Technol. 2020 Aug 5;9(9):9. doi: 10.1167/tvst.9.9.9. eCollection 2020 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验