Suppr超能文献

结合扩散张量成像的多个指标可以更好地区分创伤性脑损伤患者与健康受试者。

Combining Multiple Indices of Diffusion Tensor Imaging Can Better Differentiate Patients with Traumatic Brain Injury from Healthy Subjects.

作者信息

Abdelrahman Hiba Abuelgasim Fadlelmoula, Ubukata Shiho, Ueda Keita, Fujimoto Gaku, Oishi Naoya, Aso Toshihiko, Murai Toshiya

机构信息

Kyoto University Graduate School of Medicine-Department of Psychiatry, Kyoto, 606-8507, Japan.

Kyoto University Graduate School of Medicine-Medical Innovation Center, Kyoto, 606-8507, Japan.

出版信息

Neuropsychiatr Dis Treat. 2022 Aug 23;18:1801-1814. doi: 10.2147/NDT.S354265. eCollection 2022.

Abstract

AIM

Diffuse axonal injury (DAI) is one of the most common pathological features of traumatic brain injury (TBI). Diffusion tensor imaging (DTI) indices can be used to identify and quantify white matter microstructural changes following DAI. Recently, many studies have used DTI with various machine learning approaches to predict white matter microstructural changes following TBI. The current study sought to examine whether our classification approach using multiple DTI indices in conjunction with machine learning is a useful tool for diagnosing/classifying TBI patients and healthy controls.

METHODS

Participants were adult patients with chronic TBI (n = 26) with DAI pathology, and age- and sex-matched healthy controls (n = 26). DTI images were obtained from all participants. Tract-based spatial statistics analyses were applied to DTI images. Classification models were built using principal component analysis and support vector machines. Receiver operator characteristic curve analysis and area under the curve were used to assess the classification performance of the different classifiers.

RESULTS

Tract-based spatial statistics revealed significantly decreased fractional anisotropy, as well as increased mean diffusivity, axial diffusivity, and radial diffusivity in patients with TBI compared with healthy controls (all p-values < 0.01). The principal component analysis and support vector machine-based machine learning classification using combined DTI indices classified patients with TBI and healthy controls with an accuracy of 90.5% with an area under the curve of 93 ± 0.09.

CONCLUSION

These results highlight the potential of our approach combining multiple DTI measures to identify patients with TBI.

摘要

目的

弥漫性轴索损伤(DAI)是创伤性脑损伤(TBI)最常见的病理特征之一。扩散张量成像(DTI)指标可用于识别和量化DAI后白质微观结构的变化。最近,许多研究使用DTI结合各种机器学习方法来预测TBI后白质微观结构的变化。本研究旨在探讨我们使用多种DTI指标结合机器学习的分类方法是否是诊断/分类TBI患者和健康对照的有用工具。

方法

参与者为患有DAI病理的成年慢性TBI患者(n = 26)以及年龄和性别匹配的健康对照(n = 26)。从所有参与者获取DTI图像。对DTI图像应用基于纤维束的空间统计分析。使用主成分分析和支持向量机构建分类模型。使用受试者工作特征曲线分析和曲线下面积来评估不同分类器的分类性能。

结果

基于纤维束的空间统计显示,与健康对照相比,TBI患者的各向异性分数显著降低,平均扩散率、轴向扩散率和径向扩散率增加(所有p值<0.01)。使用组合DTI指标的基于主成分分析和支持向量机的机器学习分类对TBI患者和健康对照进行分类,准确率为90.5%,曲线下面积为93±0.09。

结论

这些结果突出了我们结合多种DTI测量方法来识别TBI患者的方法的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6017/9419894/f5e368f85b91/NDT-18-1801-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验