Suppr超能文献

基于深度学习的 X 射线影像对病毒性肺炎、非病毒性肺炎和 COVID-19 肺炎的诊断和鉴别诊断的方法。

A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images.

机构信息

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China.

Department of Computer Science and Technology & BNRist, Tsinghua University, Beijing, China.

出版信息

Nat Biomed Eng. 2021 Jun;5(6):509-521. doi: 10.1038/s41551-021-00704-1. Epub 2021 Apr 15.

Abstract

Common lung diseases are first diagnosed using chest X-rays. Here, we show that a fully automated deep-learning pipeline for the standardization of chest X-ray images, for the visualization of lesions and for disease diagnosis can identify viral pneumonia caused by coronavirus disease 2019 (COVID-19) and assess its severity, and can also discriminate between viral pneumonia caused by COVID-19 and other types of pneumonia. The deep-learning system was developed using a heterogeneous multicentre dataset of 145,202 images, and tested retrospectively and prospectively with thousands of additional images across four patient cohorts and multiple countries. The system generalized across settings, discriminating between viral pneumonia, other types of pneumonia and the absence of disease with areas under the receiver operating characteristic curve (AUCs) of 0.94-0.98; between severe and non-severe COVID-19 with an AUC of 0.87; and between COVID-19 pneumonia and other viral or non-viral pneumonia with AUCs of 0.87-0.97. In an independent set of 440 chest X-rays, the system performed comparably to senior radiologists and improved the performance of junior radiologists. Automated deep-learning systems for the assessment of pneumonia could facilitate early intervention and provide support for clinical decision-making.

摘要

常见肺部疾病首先通过 X 光胸片进行诊断。在这里,我们展示了一个完全自动化的深度学习管道,用于标准化胸部 X 光图像,可视化病变并进行疾病诊断,可以识别由 2019 年冠状病毒病(COVID-19)引起的病毒性肺炎,并评估其严重程度,还可以区分 COVID-19 引起的病毒性肺炎和其他类型的肺炎。该深度学习系统使用来自 145202 张图像的异质多中心数据集进行开发,并在四个患者队列和多个国家的数千张额外图像上进行了回顾性和前瞻性测试。该系统具有很强的泛化能力,可以区分病毒性肺炎、其他类型的肺炎和无疾病,其受试者工作特征曲线下面积(AUC)为 0.94-0.98;区分严重和非严重 COVID-19 的 AUC 为 0.87;区分 COVID-19 肺炎和其他病毒性或非病毒性肺炎的 AUC 为 0.87-0.97。在一组 440 张胸部 X 光片中,该系统的表现与高级放射科医生相当,并提高了初级放射科医生的表现。用于评估肺炎的自动化深度学习系统可以促进早期干预并为临床决策提供支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验