The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
Acta Biomater. 2022 Oct 15;152:255-272. doi: 10.1016/j.actbio.2022.08.049. Epub 2022 Aug 27.
Fibroblasts can be directly reprogrammed via a combination of small molecules to generate induced neurons (iNs), bypassing intermediate stages. This method holds great promise for regenerative medicine; however, it remains inefficient. Recently, studies have suggested that physical cues may improve the direct reprogramming of fibroblasts into neurons, but the underlying mechanisms remain to be further explored, and the physical factors reported to date do not exhibit the full properties of the extracellular matrix (ECM). Previous in vitro studies mainly used rigid polystyrene dishes, while one of the characteristics of the native in-vivo environment of neurons is the soft nature of brain ECM. The reported stiffness of brain tissue is very soft ranging between 100 Pa and 3 kPa, and the effect of substrate stiffness on direct neuronal reprogramming has not been explored. Here, we show for the first time that soft substrates substantially improved the production efficiency and quality of iNs, without needing to co-culture with glial cells during reprogramming, producing more glutamatergic neurons with electrophysiological functions in a shorter time. Transcriptome sequencing indicated that soft substrates might promote glutamatergic neuron reprogramming through integrins, actin cytoskeleton, Hippo signalling pathway, and regulation of mesenchymal-to-epithelial transition, and competing endogenous RNA network analysis provided new targets for neuronal reprogramming. We demonstrated that soft substrates may promote neuronal reprogramming by inhibiting microRNA-615-3p-targeting integrin subunit beta 4. Our findings can aid the development of regenerative therapies and help improve our understanding of neuronal reprogramming. STATEMENT OF SIGNIFICANCE: First, we have shown that low stiffness promotes direct reprogramming on the basis of small molecule combinations. To the best of our knowledge, this is the first report on this type of method, which may greatly promote the progress of neural reprogramming. Second, we found that microRNA (miR)-615-3p may interact with integrin subunit beta 4 (ITGB4), and the soft substrates may promote neural reprogramming by inhibiting miR-615-3p targeting ITGB4. We are the first to report on this mechanism. Our findings will provide more functional neurons for subsequent basic and clinical research in neurological regenerative medicine, and will help to improve the overall understanding of neural reprogramming. This work also provides new ideas for the design of medical biomaterials for nerve regeneration.
成纤维细胞可通过小分子组合直接重编程为诱导神经元(iNs),从而绕过中间阶段。该方法为再生医学带来了巨大的希望;然而,它的效率仍然不高。最近的研究表明,物理线索可能改善成纤维细胞向神经元的直接重编程,但潜在机制仍需进一步探索,并且迄今为止报道的物理因素并不具有细胞外基质(ECM)的全部特性。以前的体外研究主要使用刚性聚苯乙烯培养皿,而神经元体内环境的一个特征是脑 ECM 的柔软性质。脑组织的报道硬度非常柔软,范围在 100 Pa 到 3 kPa 之间,并且基底硬度对直接神经元重编程的影响尚未得到探索。在这里,我们首次表明,软基底可大大提高 iNs 的产生效率和质量,而无需在重编程过程中与神经胶质细胞共培养,从而在更短的时间内产生具有电生理功能的更多谷氨酸能神经元。转录组测序表明,软基底可能通过整合素、肌动蛋白细胞骨架、 Hippo 信号通路和上皮-间充质转化的调节以及竞争内源性 RNA 网络分析来促进谷氨酸能神经元重编程,并为神经元重编程提供新的靶点。我们证明软基底可能通过抑制 microRNA-615-3p 靶向整合素亚基β4 来促进神经元重编程。我们的发现可以帮助开发再生疗法,并有助于提高我们对神经元重编程的理解。 意义声明:首先,我们已经证明,基于小分子组合,低刚度可以促进直接重编程。据我们所知,这是对此类方法的首次报道,这可能极大地促进神经重编程的进展。其次,我们发现 microRNA (miR)-615-3p 可能与整合素亚基β4 (ITGB4) 相互作用,软基底可能通过抑制 miR-615-3p 靶向 ITGB4 来促进神经重编程。我们是第一个报道该机制的人。我们的发现将为神经再生医学的后续基础和临床研究提供更多功能神经元,并有助于提高对神经重编程的整体理解。这项工作还为神经再生的医用生物材料设计提供了新的思路。