Suppr超能文献

冷冻电镜在探索 RNA 结构动态方面的前景。

The promise of cryo-EM to explore RNA structural dynamics.

机构信息

Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA. Electronic address: https://twitter.com/Steve_Bonilla.

Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.

出版信息

J Mol Biol. 2022 Sep 30;434(18):167802. doi: 10.1016/j.jmb.2022.167802. Epub 2022 Aug 29.

Abstract

Conformational dynamics are essential to macromolecular function. This is certainly true of RNA, whose ability to undergo programmed conformational dynamics is essential to create and regulate complex biological processes. However, methods to easily and simultaneously interrogate both the structure and conformational dynamics of fully functional RNAs in isolation and in complex with proteins have not historically been available. Due to its ability to image and classify single particles, cryogenic electron microscopy (cryo-EM) has the potential to address this gap and may be particularly amenable to exploring structural dynamics within the three-dimensional folds of biologically active RNAs. We discuss the possibilities and current limitations of applying cryo-EM to simultaneously study RNA structure and conformational dynamics, and present one example that illustrates this (as of yet) not fully realized potential.

摘要

构象动力学对于生物大分子的功能至关重要。这对于 RNA 来说尤其如此,因为其能够进行程序性构象动力学是创建和调节复杂生物过程的关键。然而,在过去,并没有一种简单而又能同时检测完整功能的 RNA 结构及其构象动力学的方法,无论是在单独状态还是与蛋白质结合状态下都是如此。由于 cryo-EM(低温电子显微镜)具有成像和分类单个颗粒的能力,因此它有潜力解决这一差距,并且可能特别适合于探索生物活性 RNA 的三维折叠结构内的结构动力学。我们讨论了将 cryo-EM 应用于同时研究 RNA 结构和构象动力学的可能性和当前限制,并提供了一个实例来说明这一(目前)尚未完全实现的潜力。

相似文献

1
The promise of cryo-EM to explore RNA structural dynamics.
J Mol Biol. 2022 Sep 30;434(18):167802. doi: 10.1016/j.jmb.2022.167802. Epub 2022 Aug 29.
2
Cryo-EM: A window into the dynamic world of RNA molecules.
Curr Opin Struct Biol. 2024 Oct;88:102916. doi: 10.1016/j.sbi.2024.102916. Epub 2024 Sep 3.
3
Challenges, advances, and opportunities in RNA structural biology by Cryo-EM.
Curr Opin Struct Biol. 2024 Oct;88:102894. doi: 10.1016/j.sbi.2024.102894. Epub 2024 Aug 8.
4
Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly.
Nat Methods. 2022 May;19(5):576-585. doi: 10.1038/s41592-022-01455-w. Epub 2022 May 2.
5
Exploring cryo-electron microscopy with molecular dynamics.
Biochem Soc Trans. 2022 Feb 28;50(1):569-581. doi: 10.1042/BST20210485.
6
Using Molecular Simulation to Model High-Resolution Cryo-EM Reconstructions.
Methods Enzymol. 2015;558:497-514. doi: 10.1016/bs.mie.2015.02.011. Epub 2015 May 9.
7
Structural and biophysical dissection of RNA conformational ensembles.
Curr Opin Struct Biol. 2024 Oct;88:102908. doi: 10.1016/j.sbi.2024.102908. Epub 2024 Aug 14.
8
Cryo-electron microscopy as an investigative tool: the ribosome as an example.
Bioessays. 2001 Aug;23(8):725-32. doi: 10.1002/bies.1102.
9
RNA origami scaffolds facilitate cryo-EM characterization of a Broccoli-Pepper aptamer FRET pair.
Nucleic Acids Res. 2023 May 22;51(9):4613-4624. doi: 10.1093/nar/gkad224.
10
Snapshots of the first-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM.
Nucleic Acids Res. 2023 Feb 22;51(3):1317-1325. doi: 10.1093/nar/gkac1268.

引用本文的文献

4
Ensemble refinement of mismodeled cryo-EM RNA structures using all-atom simulations.
Nat Commun. 2025 May 16;16(1):4549. doi: 10.1038/s41467-025-59769-0.
5
Molecular insights into de novo small-molecule recognition by an intron RNA structure.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2502425122. doi: 10.1073/pnas.2502425122. Epub 2025 May 8.
6
Biomolecules Interacting with Long Noncoding RNAs.
Biology (Basel). 2025 Apr 19;14(4):442. doi: 10.3390/biology14040442.
9
Secondary-Structure-Informed RNA Inverse Design via Relational Graph Neural Networks.
Noncoding RNA. 2025 Feb 26;11(2):18. doi: 10.3390/ncrna11020018.
10
The evolution and application of RNA-focused small molecule libraries.
RSC Chem Biol. 2025 Feb 13;6(4):510-527. doi: 10.1039/d4cb00272e. eCollection 2025 Apr 2.

本文引用的文献

1
Cryo-EM reveals an entangled kinetic trap in the folding of a catalytic RNA.
Sci Adv. 2022 Aug 26;8(34):eabq4144. doi: 10.1126/sciadv.abq4144.
2
Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly.
Nat Methods. 2022 May;19(5):576-585. doi: 10.1038/s41592-022-01455-w. Epub 2022 May 2.
3
Thoughts on how to think (and talk) about RNA structure.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2112677119. doi: 10.1073/pnas.2112677119. Epub 2022 Apr 19.
4
Effects of cryo-EM cooling on structural ensembles.
Nat Commun. 2022 Mar 31;13(1):1709. doi: 10.1038/s41467-022-29332-2.
5
Cryo-EM advances in RNA structure determination.
Signal Transduct Target Ther. 2022 Feb 23;7(1):58. doi: 10.1038/s41392-022-00916-0.
6
A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure.
Science. 2021 Nov 19;374(6570):955-960. doi: 10.1126/science.abe8526. Epub 2021 Nov 18.
7
Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome.
Nat Struct Mol Biol. 2021 Sep;28(9):747-754. doi: 10.1038/s41594-021-00653-y. Epub 2021 Aug 23.
8
Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution.
Nature. 2021 Aug;596(7873):603-607. doi: 10.1038/s41586-021-03803-w. Epub 2021 Aug 11.
10
A Bayesian approach to extracting free-energy profiles from cryo-electron microscopy experiments.
Sci Rep. 2021 Jul 1;11(1):13657. doi: 10.1038/s41598-021-92621-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验