Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Magnetism and Simulation Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Sci Rep. 2021 Jul 1;11(1):13657. doi: 10.1038/s41598-021-92621-1.
Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule's conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles. In this work, we propose the cryo-BIFE method (cryo-EM Bayesian Inference of Free-Energy profiles), which uses a path collective variable to extract free-energy profiles and their uncertainties from cryo-EM images. We test the framework on several synthetic systems where the imaging parameters and conditions were controlled. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. We then use the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover not only the most probable conformation (used to generate a high-resolution reconstruction of the calcium-bound state) but also a metastable state that corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are on the order of [Formula: see text]. We expect our tool for extracting free-energy profiles from cryo-EM images to enable more complete characterization of the thermodynamic ensemble of biomolecules.
低温电子显微镜(cryo-EM)提取单个生物分子的单颗粒密度投影。尽管 cryo-EM 被广泛用于 3D 重建,但由于其单颗粒性质,它有可能提供关于生物分子构象可变性和潜在自由能景观的信息。然而,由于单个颗粒中的信噪比(SNR)低,将 cryo-EM 视为单分子技术具有挑战性。在这项工作中,我们提出了 cryo-BIFE 方法(cryo-EM 贝叶斯自由能分布推断),该方法使用路径集体变量从 cryo-EM 图像中提取自由能分布及其不确定性。我们在几个经过控制成像参数和条件的合成系统上测试了该框架。我们发现,对于现实的 cryo-EM 环境和相关的生物分子系统,有可能恢复潜在的自由能,姿势精度和 SNR 是关键决定因素。然后,我们使用该方法研究了具有真实 cryo-EM 颗粒的钙激活通道的构象转变。有趣的是,我们不仅恢复了最可能的构象(用于生成钙结合状态的高分辨率重建),而且还恢复了对应于钙未结合构象的亚稳态。正如同一样品中周转转变所预期的那样,激活势垒的数量级为[Formula: see text]。我们期望我们从 cryo-EM 图像中提取自由能分布的工具能够更全面地描述生物分子的热力学集合。