Dietschreit Johannes C B, Diestler Dennis J, Hulm Andreas, Ochsenfeld Christian, Gómez-Bombarelli Rafael
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA.
J Chem Phys. 2022 Aug 28;157(8):084113. doi: 10.1063/5.0102075.
Given a chemical reaction going from reactant (R) to the product (P) on a potential energy surface (PES) and a collective variable (CV) discriminating between R and P, we define the free-energy profile (FEP) as the logarithm of the marginal Boltzmann distribution of the CV. This FEP is not a true free energy. Nevertheless, it is common to treat the FEP as the "free-energy" analog of the minimum potential energy path and to take the activation free energy, ΔF , as the difference between the maximum at the transition state and the minimum at R. We show that this approximation can result in large errors. The FEP depends on the CV and is, therefore, not unique. For the same reaction, different discriminating CVs can yield different ΔF . We derive an exact expression for the activation free energy that avoids this ambiguity. We find ΔF to be a combination of the probability of the system being in the reactant state, the probability density on the dividing surface, and the thermal de Broglie wavelength associated with the transition. We apply our formalism to simple analytic models and realistic chemical systems and show that the FEP-based approximation applies only at low temperatures for CVs with a small effective mass. Most chemical reactions occur on complex, high-dimensional PES that cannot be treated analytically and pose the added challenge of choosing a good CV. We study the influence of that choice and find that, while the reaction free energy is largely unaffected, ΔF is quite sensitive.
考虑一个化学反应,在势能面(PES)上从反应物(R)转变为产物(P),以及一个区分R和P的集体变量(CV),我们将自由能分布(FEP)定义为CV的边际玻尔兹曼分布的对数。这个FEP不是真正的自由能。然而,通常将FEP视为最小势能路径的“自由能”类似物,并将活化自由能ΔF视为过渡态的最大值与R处最小值之间的差值。我们表明这种近似可能导致较大误差。FEP取决于CV,因此不是唯一的。对于相同的反应,不同的区分CV可以产生不同的ΔF。我们推导出了一个避免这种模糊性的活化自由能的精确表达式。我们发现ΔF是系统处于反应物状态的概率、分隔面上的概率密度以及与过渡相关的热德布罗意波长的组合。我们将我们的形式体系应用于简单的解析模型和实际化学系统,并表明基于FEP的近似仅在低温下适用于有效质量较小的CV。大多数化学反应发生在复杂的高维PES上,无法进行解析处理,并且在选择合适的CV方面带来了额外的挑战。我们研究了这种选择的影响,发现虽然反应自由能基本不受影响,但ΔF相当敏感。