Benayad Zakarya, David Rolf, Stirnemann Guillaume
CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, Université Paris-Cité, 75005 Paris, France.
PASTEUR, Département de Chimie, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne University, CNRS, 75005 Paris, France.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2322040121. doi: 10.1073/pnas.2322040121. Epub 2024 May 29.
While RNA appears as a good candidate for the first autocatalytic systems preceding the emergence of modern life, the synthesis of RNA oligonucleotides without enzymes remains challenging. Because the uncatalyzed reaction is extremely slow, experimental studies bring limited and indirect information on the reaction mechanism, the nature of which remains debated. Here, we develop neural network potentials (NNPs) to study the phosphoester bond formation in water. While NNPs are becoming routinely applied to nonreactive systems or simple reactions, we demonstrate how they can systematically be trained to explore the reaction phase space for complex reactions involving several proton transfers and exchanges of heavy atoms. We then propagate at moderate computational cost hundreds of nanoseconds of a variety of enhanced sampling simulations with quantum accuracy in explicit solvent conditions. The thermodynamically preferred reaction pathway is a concerted, dissociative mechanism, with the transient formation of a metaphosphate transition state and direct participation of water solvent molecules that facilitate the exchange of protons through the nonbridging phosphate oxygens. Associative-dissociative pathways, characterized by a much tighter pentacoordinated phosphate, are higher in free energy. Our simulations also suggest that diprotonated phosphate, whose reactivity is never directly assessed in the experiments, is significantly less reactive than the monoprotonated species, suggesting that it is probably never the reactive species in normal pH conditions. These observations rationalize unexplained experimental results and the temperature dependence of the reaction rate, and they pave the way for the design of more efficient abiotic catalysts and activating groups.
虽然RNA似乎是现代生命出现之前首个自催化系统的理想候选者,但在没有酶的情况下合成RNA寡核苷酸仍然具有挑战性。由于无催化反应极其缓慢,实验研究只能提供关于反应机制的有限且间接的信息,而反应机制的本质仍存在争议。在此,我们开发了神经网络势(NNPs)来研究水中磷酸二酯键的形成。虽然NNPs已常规应用于非反应性系统或简单反应,但我们展示了如何对其进行系统训练,以探索涉及多个质子转移和重原子交换的复杂反应的反应相空间。然后,我们在显式溶剂条件下以适度的计算成本进行了数百纳秒的各种具有量子精度的增强采样模拟。热力学上优先的反应途径是一种协同的解离机制,会短暂形成偏磷酸过渡态,并且水溶剂分子直接参与其中,通过非桥连磷酸氧促进质子交换。以紧密的五配位磷酸为特征的缔合 - 解离途径的自由能更高。我们的模拟还表明,实验中从未直接评估其反应性的双质子化磷酸比单质子化物种的反应性明显更低,这表明在正常pH条件下它可能永远不是反应性物种。这些观察结果解释了无法解释的实验结果和反应速率的温度依赖性,并为设计更高效的非生物催化剂和活化基团铺平了道路。