Suppr超能文献

使用密度泛函理论计算和贝叶斯优化设计具有低空穴和电子重组能的分子

Design of Molecules with Low Hole and Electron Reorganization Energy Using DFT Calculations and Bayesian Optimization.

作者信息

Ando Tatsuhito, Shimizu Naoto, Yamamoto Norihisa, Matsuzawa Nobuyuki N, Maeshima Hiroyuki, Kaneko Hiromasa

机构信息

Engineering Division, Panasonic Industry Co., Ltd., Kadoma, Osaka 571-8506, Japan.

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

出版信息

J Phys Chem A. 2022 Sep 15;126(36):6336-6347. doi: 10.1021/acs.jpca.2c05229. Epub 2022 Sep 2.

Abstract

Materials exhibiting higher mobility than conventional organic semiconducting materials, such as fullerenes and fused thiophenes, are in high demand for applications in printed electronics. To discover new molecules that might show improved charge mobility, the adaptive design of experiments (DoE) to design molecules with low reorganization energy was performed by combining density functional theory (DFT) methods and machine learning techniques. DFT-calculated values of 165 molecules were used as an initial training dataset for a Gaussian process regression (GPR) model, and five rounds of molecular designs applying the GPR model and validation via DFT calculations were executed. As a result, new molecules whose reorganization energy is smaller than the lowest value in the initial training dataset were successfully discovered.

摘要

与传统有机半导体材料(如富勒烯和稠合噻吩)相比,具有更高迁移率的材料在印刷电子应用中需求很高。为了发现可能显示出改善的电荷迁移率的新分子,通过结合密度泛函理论(DFT)方法和机器学习技术,进行了用于设计具有低重组能的分子的自适应实验设计(DoE)。165个分子的DFT计算值被用作高斯过程回归(GPR)模型的初始训练数据集,并执行了应用GPR模型的五轮分子设计以及通过DFT计算进行验证。结果,成功发现了重组能小于初始训练数据集中最低值的新分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验