Suppr超能文献

使用WGAN生成用于自动驾驶车辆测试的高风险动力两轮车场景。

High-risk powered two-wheelers scenarios generation for autonomous vehicle testing using WGAN.

作者信息

Luo Xiaolong, Wei Zhiyuan, Zhang Guoqing, Huang Helai, Zhou Rui

机构信息

School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, China.

出版信息

Traffic Inj Prev. 2025;26(2):243-251. doi: 10.1080/15389588.2024.2399305. Epub 2024 Oct 15.

Abstract

OBJECTIVE

Autonomous vehicles (AVs) have the potential to revolutionize the future of mobility by significantly improving traffic safety. This study presents a novel method for validating the safety performance of AVs in high-risk scenarios involving powered 2-wheelers (PTWs). By generating high-risk scenarios using in-depth crash data, this study is devoted to addressing the challenge of public road scenarios in testing, which often lack the necessary complexity and risk to effectively evaluate the capabilities of AVs in high-risk situations.

METHOD

Our approach employs a Wasserstein generative adversarial network (WGAN) to generate high-risk scenes, particularly focusing on PTW scenarios. By extracting 314 car-to-PTW crashes from the China In-depth Mobility Safety Study-Traffic Accident database, we simulate outcomes using PC-Crash software. The data are divided into scenes at 0.1-s intervals, with WGAN generating numerous high-risk scenes. By using a cumulative distribution function (CDF), we sampled and analyzed the vehicle's dynamic information to generate complete scenarios applicable to the test. The validation process involves using the SVL Simulator and the Baidu Apollo joint simulation platform to evaluate the AV's driving behavior and interactions with PTWs.

RESULTS

This study evaluates model generation results by comparing distributions using Wasserstein distance as an indicator. The generator converges after approximately 200 epochs, with the iterator converging quickly. Subsequently, 10,000 new scenes are then generated. The distribution of several key parameters in the generated scenes can be found to approximate that of the original scenes. After sampling, the usability of generated scenarios is 64.76%. Virtual simulations confirm the effectiveness of the scenario generation method, with a generated scenario crash rate of 16.50% closely reflecting the original rate of 15.0%, showcasing the method's capacity to produce realistic and hazardous scenarios.

CONCLUSIONS

The experimental results suggest that these scenarios exhibit a level of risk similar to the original crashes and are effective for testing AVs. Consequently, the generated scenarios enhance the diversity of the scenario library and accelerate the overall testing process of AVs.

摘要

目的

自动驾驶汽车(AVs)有潜力通过显著提高交通安全来彻底改变未来的出行方式。本研究提出了一种在涉及电动两轮车(PTWs)的高风险场景中验证自动驾驶汽车安全性能的新方法。通过使用深入的碰撞数据生成高风险场景,本研究致力于解决测试中公共道路场景的挑战,这些场景往往缺乏必要的复杂性和风险,无法有效评估自动驾驶汽车在高风险情况下的能力。

方法

我们的方法采用瓦瑟斯坦生成对抗网络(WGAN)来生成高风险场景,尤其侧重于电动两轮车场景。通过从中国深度出行安全研究 - 交通事故数据库中提取314起汽车与电动两轮车碰撞事故,我们使用PC - Crash软件模拟结果。数据以0.1秒的间隔划分为场景,WGAN生成大量高风险场景。通过使用累积分布函数(CDF),我们对车辆的动态信息进行采样和分析,以生成适用于测试的完整场景。验证过程涉及使用SVL模拟器和百度阿波罗联合仿真平台来评估自动驾驶汽车的驾驶行为以及与电动两轮车的交互。

结果

本研究通过使用瓦瑟斯坦距离作为指标比较分布来评估模型生成结果。生成器在大约200个轮次后收敛,迭代器收敛迅速。随后,生成了10000个新场景。可以发现生成场景中几个关键参数的分布与原始场景近似。采样后,生成场景的可用性为64.76%。虚拟仿真证实了场景生成方法的有效性,生成场景的碰撞率为16.50%,与原始的15.0%相近反映了原始比率,展示了该方法生成逼真且危险场景的能力。

结论

实验结果表明,这些场景呈现出与原始碰撞相似的风险水平,并且对测试自动驾驶汽车有效。因此,生成的场景增加了场景库的多样性,并加速了自动驾驶汽车的整体测试过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验