Suppr超能文献

基于深度嵌入式聚类的深入碰撞数据识别典型碰撞前场景,用于自动驾驶汽车安全测试。

Identifying typical pre-crash scenarios based on in-depth crash data with deep embedded clustering for autonomous vehicle safety testing.

机构信息

School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China.

School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China; Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.

出版信息

Accid Anal Prev. 2023 Oct;191:107218. doi: 10.1016/j.aap.2023.107218. Epub 2023 Jul 17.

Abstract

Choosing appropriate scenarios is critical for autonomous vehicles (AVs) safety testing. Real-world crash scenarios can be used as critical scenarios to test the safety performance of AVs. As one of the dominant types of traffic crashes, the car to powered-two-wheelers (PTWs) crash results in a higher possibility of fatality than ordinary car-to-car crashes. Generally, typical testing scenarios are chosen according to the subjective understanding of the safety experts with limited static features of crashes (e.g., geometric features, weather). This study introduced a novel method to identify typical car-to-PTWs crash scenarios based on real-world crashes with dynamic pre-crash features investigated from the China In-depth Mobility Safety Study-Traffic Accident (CIMSS-TA) database. First, we present crash data collection and construction methods of the CIMSS-TA database to construct testing scenarios. Second, the stacked autoencoder methods are used to learn and obtain embedded features from the high-dimensional data. Third, the extracted features are clustered using k-means clustering algorithm, and then the clustering results are interpreted. Six typical car-to-PTWs scenarios are obtained with the proposed processes. This study introduces a typical high-risk scenario construction method based on deep embedded clustering. Unlike existing researches, the proposed method eliminates the negative impacts of manually selecting clustering variables and provides a more detailed scenario description. As a result, the typical scenarios obtained from AV testing are more robust.

摘要

选择合适的场景对于自动驾驶汽车(AV)的安全测试至关重要。真实世界中的碰撞场景可以作为关键场景,来测试 AV 的安全性能。作为一种主要的交通碰撞类型,汽车与两轮电动车(PTW)的碰撞比普通的汽车碰撞导致死亡的可能性更高。通常,根据安全专家的主观理解,选择典型的测试场景,这些场景具有有限的静态碰撞特征(例如,几何特征、天气)。本研究引入了一种新方法,通过中国深入流动性安全研究-交通事故(CIMSS-TA)数据库中调查的动态碰撞前特征,从真实世界的碰撞中识别典型的汽车与 PTW 碰撞场景。首先,我们提出了基于 CIMSS-TA 数据库的碰撞数据收集和构建方法,以构建测试场景。其次,使用堆叠自动编码器方法从高维数据中学习和获取嵌入式特征。然后,使用 k-均值聚类算法对提取的特征进行聚类,并解释聚类结果。通过这些过程,获得了六个典型的汽车与 PTW 碰撞场景。本研究引入了一种基于深度嵌入式聚类的典型高风险场景构建方法。与现有研究不同,该方法消除了手动选择聚类变量的负面影响,提供了更详细的场景描述。因此,从 AV 测试中获得的典型场景更稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验