Dai Shan, Kajiwara Takashi, Ikeda Miyuki, Romero-Muñiz Ignacio, Patriarche Gilles, Platero-Prats Ana E, Vimont Alexandre, Daturi Marco, Tissot Antoine, Xu Qiang, Serre Christian
Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France.
Normandie Univ., ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000, Caen, France.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202211848. doi: 10.1002/anie.202211848. Epub 2022 Sep 23.
Encapsulating ultrasmall Cu nanoparticles inside Zr-MOFs to form core-shell architecture is very challenging but of interest for CO reduction. We report for the first time the incorporation of ultrasmall Cu NCs into a series of benchmark Zr-MOFs, without Cu NCs aggregation, via a scalable room temperature fabrication approach. The Cu NCs@MOFs core-shell composites show much enhanced reactivity in comparison to the Cu NCs confined in the pore of MOFs, regardless of their very similar intrinsic properties at the atomic level. Moreover, introducing polar groups on the MOF structure can further improve both the catalytic reactivity and selectivity. Mechanistic investigation reveals that the Cu sites located at the interface between Cu NCs and support serve as the active sites and efficiently catalyze CO photoreduction. This synergetic effect may pave the way for the design of low-cost and efficient catalysts for CO photoreduction into high-value chemical feedstock.
将超小铜纳米颗粒封装在锆基金属有机框架(Zr-MOFs)中以形成核壳结构极具挑战性,但对于一氧化碳还原反应来说却很有意义。我们首次报道了通过一种可扩展的室温制备方法,将超小铜纳米团簇(Cu NCs)掺入一系列基准Zr-MOFs中,且没有Cu NCs聚集现象。与限制在MOF孔中的Cu NCs相比,Cu NCs@MOFs核壳复合材料显示出大大增强的反应活性,尽管它们在原子水平上具有非常相似的固有性质。此外,在MOF结构上引入极性基团可以进一步提高催化反应活性和选择性。机理研究表明,位于Cu NCs与载体界面处的铜位点作为活性位点,有效地催化一氧化碳光还原反应。这种协同效应可能为设计用于将一氧化碳光还原为高价值化学原料的低成本高效催化剂铺平道路。