Vandermause Jonathan, Xie Yu, Lim Jin Soo, Owen Cameron J, Kozinsky Boris
Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Nat Commun. 2022 Sep 2;13(1):5183. doi: 10.1038/s41467-022-32294-0.
Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous "on-the-fly" training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment.
到目前为止,化学反应系统的原子尺度建模要么依赖于昂贵的从头算方法,要么依赖于需要艰苦参数化的键序力场。在此,我们描述了一种贝叶斯主动学习框架,用于在分子动力学模拟期间自主“即时”训练快速且准确的反应性多体 force 场。在每个时间步,评估稀疏高斯过程的预测不确定性,以自动确定是否需要额外的从头算训练数据。我们引入了一种将训练好的核模型映射到等效多项式模型的通用方法,其预测成本低得多且与训练集大小无关。作为演示,我们在 Pt(111) 催化剂表面以化学精度进行了异质 H 周转的直接两相模拟。该模型在三天内自行训练,运行速度是 ReaxFF 模型的两倍,同时对 DFT 保持更高的保真度,并与实验结果高度吻合。