Snead Anthony A, Clark René D
Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA.
Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
Integr Comp Biol. 2022 Dec 30;62(6):1872-1886. doi: 10.1093/icb/icac138.
Sequencing data-genomics, transcriptomics, epigenomics, proteomics, and metabolomics-have revolutionized biological research, enabling a more detailed study of processes, ranging from subcellular to evolutionary, that drive biological organization. These processes, collectively, are responsible for generating patterns of phenotypic variation and can operate over dramatically different timescales (milliseconds to billions of years). While researchers often study phenotypic variation at specific levels of biological organization to isolate processes operating at that particular scale, the varying types of sequence data, or 'omics, can also provide complementary inferences to link molecular and phenotypic variation to produce an integrated view of evolutionary biology, ranging from molecular pathways to speciation. We briefly describe how 'omics has been used across biological levels and then demonstrate the utility of integrating different types of sequencing data across multiple biological levels within the same study to better understand biological phenomena. However, single-time-point studies cannot evaluate the temporal dynamics of these biological processes. Therefore, we put forward temporal 'omics as a framework that can better enable researchers to study the temporal dynamics of target processes. Temporal 'omics is not infallible, as the temporal sampling regime directly impacts inferential ability. Thus, we also discuss the role the temporal sampling regime plays in deriving inferences about the environmental conditions driving biological processes and provide examples that demonstrate the impact of the sampling regime on biological inference. Finally, we forecast the future of temporal 'omics by highlighting current methodological advancements that will enable temporal 'omics to be extended across species and timescales. We extend this discussion to using temporal multi-omics to integrate across the biological hierarchy to evaluate and link the temporal dynamics of processes that generate phenotypic variation.
测序数据——基因组学、转录组学、表观基因组学、蛋白质组学和代谢组学——已经彻底改变了生物学研究,使人们能够更详细地研究从亚细胞到进化等驱动生物组织形成的过程。这些过程共同作用,产生表型变异模式,并且可以在截然不同的时间尺度(从毫秒到数十亿年)上发挥作用。虽然研究人员通常在生物组织的特定层面研究表型变异,以分离在该特定尺度上起作用的过程,但不同类型的序列数据,即“组学”,也可以提供互补的推断,将分子变异与表型变异联系起来,从而形成从分子途径到物种形成的进化生物学综合观点。我们简要描述了“组学”如何在生物各个层面得到应用,然后展示了在同一研究中整合跨多个生物层面的不同类型测序数据以更好地理解生物现象的实用性。然而,单点研究无法评估这些生物过程的时间动态。因此,我们提出时间组学作为一个框架,它能够更好地使研究人员研究目标过程的时间动态。时间组学并非万无一失,因为时间采样方案直接影响推断能力。因此,我们还讨论了时间采样方案在推断驱动生物过程的环境条件时所起的作用,并提供实例说明采样方案对生物学推断的影响。最后,我们通过强调当前的方法学进展来预测时间组学的未来,这些进展将使时间组学能够跨越物种和时间尺度进行扩展。我们将这一讨论扩展到使用时间多组学来整合生物层次结构,以评估和联系产生表型变异的过程的时间动态。