Wisniewski Emily O, Mistriotis Panagiotis, Bera Kaustav, Law Robert A, Zhang Jitao, Nikolic Milos, Weiger Michael, Parlani Maria, Tuntithavornwat Soontorn, Afthinos Alexandros, Zhao Runchen, Wirtz Denis, Kalab Petr, Scarcelli Giuliano, Friedl Peter, Konstantopoulos Konstantinos
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
Sci Adv. 2020 Jul 31;6(31):eaba6505. doi: 10.1126/sciadv.aba6505. eCollection 2020 Jul.
How migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios. Vertical confinement, exerted along the dorsoventral polarity axis, induces myosin II-dependent nuclear stiffening, which results in RhoA hyperactivation at the cell poles and slow bleb-based migration. In lateral confinement, directed perpendicularly to the dorsoventral polarity axis, the absence of perinuclear myosin II fails to increase nuclear stiffness. Hence, cells maintain basal RhoA activity and display faster mesenchymal migration. In summary, by integrating microfabrication, imaging techniques, and intravital microscopy, we demonstrate that dorsoventral polarity, observed in vivo and in vitro, directs cell responses in confinement by spatially tuning RhoA activity, which controls bleb-based versus mesenchymal migration.
迁移细胞如何以不同方式适应并响应细胞外轨迹的几何形状仍然未知。通过活体成像,我们证明侵入细胞在体内表现出背腹(从上到下)极性。为了研究背腹极性对细胞在不同限制几何形状中运动的影响,我们制作了具有固定横截面积但纵横比不同的微通道。沿背腹极性轴施加的垂直限制会诱导肌球蛋白II依赖性的细胞核变硬,这会导致细胞两极的RhoA过度激活,并导致基于气泡的缓慢迁移。在垂直于背腹极性轴定向的侧向限制中,核周肌球蛋白II的缺失不会增加细胞核硬度。因此,细胞维持基础RhoA活性并表现出更快的间充质迁移。总之,通过整合微加工、成像技术和活体显微镜技术,我们证明在体内和体外观察到的背腹极性通过空间调节RhoA活性来指导细胞在限制条件下的反应,而RhoA活性控制基于气泡的迁移与间充质迁移。