Suppr超能文献

用于普及型医疗保健中呼吸音检测与分类的多任务学习神经网络。

Multi-task learning neural networks for breath sound detection and classification in pervasive healthcare.

作者信息

Tran-Anh Dat, Vu Nam Hoai, Nguyen-Trong Khanh, Pham Cuong

机构信息

Posts and Telecommunications Institute of Technology, Hanoi, Viet Nam.

出版信息

Pervasive Mob Comput. 2022 Oct;86:101685. doi: 10.1016/j.pmcj.2022.101685. Epub 2022 Aug 27.

Abstract

With the emergence of many grave Chronic obstructive pulmonary diseases (COPDs) and the COVID-19 pandemic, there is a need for timely detection of abnormal respiratory sounds, such as deep and heavy breaths. Although numerous efficient pervasive healthcare systems have been proposed for tracking patients, few studies have focused on these breaths. This paper presents a method that supports physicians in monitoring in-hospital and at-home patients by monitoring their breath. The proposed method is based on three deep neural networks in audio analysis: RNNoise for noise suppression, SincNet - Convolutional Neural Network, and Residual Bidirectional Long Short-Term Memory for breath sound analysis at edge devices and centralized servers, respectively. We also developed a pervasive system with two configurations: (i) an edge architecture for in-hospital patients; and (ii) a central architecture for at-home ones. Furthermore, a dataset, named BreathSet, was collected from 27 COPD patients being treated at three hospitals in Vietnam to verify our proposed method. The experimental results demonstrated that our system efficiently detected and classified breath sounds with F1-scores of 90% and 91% for the tiny model version on low-cost edge devices, and 90% and 95% for the full model version on central servers, respectively. The proposed system was successfully implemented at hospitals to help physicians in monitoring respiratory patients in real time.

摘要

随着许多严重慢性阻塞性肺疾病(COPD)的出现以及新冠疫情的爆发,及时检测异常呼吸音(如深沉的呼吸声)变得十分必要。尽管已经提出了许多高效的普及型医疗系统来跟踪患者,但很少有研究关注这些呼吸音。本文提出了一种通过监测患者呼吸来辅助医生监测住院患者和居家患者的方法。所提出的方法基于音频分析中的三个深度神经网络:用于噪声抑制的RNNoise、用于边缘设备呼吸音分析的SincNet - 卷积神经网络以及用于集中式服务器呼吸音分析的残差双向长短期记忆网络。我们还开发了一种具有两种配置的普及型系统:(i)用于住院患者的边缘架构;(ii)用于居家患者的中央架构。此外,我们从越南三家医院正在接受治疗的27名COPD患者那里收集了一个名为BreathSet的数据集,以验证我们提出的方法。实验结果表明,我们的系统能够有效地检测和分类呼吸音,对于低成本边缘设备上的微型模型版本,F1分数分别为90%和91%,对于中央服务器上的完整模型版本,F1分数分别为90%和95%。所提出的系统已在医院成功实施,以帮助医生实时监测呼吸疾病患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c6/9419997/f0a7ee03471b/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验