Kamp Bart, Gibaja Juan José, San Martin Javier, Turiel Ignacio
Orkestra-Basque Institute of Competitiveness / Deusto Business School, Spain.
Deusto University, Spain.
Saf Sci. 2023 Jan;157:105902. doi: 10.1016/j.ssci.2022.105902. Epub 2022 Aug 29.
We consider multiple safety measures in relation to the COVID-19 virus and look at their adoption levels for a variety of 15 individual countries, based on data from Yougov.co.uk. Subsequently, we establish correlation coefficients between measure-specific uptake levels and Hofstede dimension scores for all countries considered. We notably find that Power Distance Index (PDI) and Individualism (IDV) have a considerable explanatory power. In addition, we carried out a Principal Components Analysis (PCA) and a cluster analysis to see whether the behavioural patterns across countries can be grouped, and which Hofstede dimensions correlate strongest with the two main components that follow from the PCA. The PCA provides further confirmation of PDI and IDV being the most important explanatory factors for the uptake of measures across countries. The cluster analysis, in turn, reveals four broad groups, which only partly coincide with the way that the mental image clustering scheme by Wursten (2019) allots countries into its respective clusters. Hence, this provides a basis to suggest that data-driven exercises like the ones from our paper can serve to adjust Wursten's intuitive scheme.
我们考虑了与新冠病毒相关的多种安全措施,并根据Yougov.co.uk的数据,考察了15个不同国家对这些措施的采用程度。随后,我们计算了所有被考察国家中特定措施的采用水平与霍夫斯泰德维度得分之间的相关系数。我们特别发现,权力距离指数(PDI)和个人主义(IDV)具有相当强的解释力。此外,我们进行了主成分分析(PCA)和聚类分析,以查看各国的行为模式是否可以分组,以及霍夫斯泰德的哪些维度与主成分分析得出的两个主要成分相关性最强。主成分分析进一步证实了权力距离指数和个人主义是各国采用措施的最重要解释因素。聚类分析则揭示了四大类,它们只是部分地与伍尔斯特恩(2019年)的心理意象聚类方案将各国分配到各自类别中的方式相吻合。因此,这为如下观点提供了依据,即像我们论文中的数据驱动型研究可以用来调整伍尔斯特恩的直观方案。