Suppr超能文献

用于逆成像问题的未经训练的神经网络先验:一项综述。

Untrained Neural Network Priors for Inverse Imaging Problems: A Survey.

作者信息

Qayyum Adnan, Ilahi Inaam, Shamshad Fahad, Boussaid Farid, Bennamoun Mohammed, Qadir Junaid

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):6511-6536. doi: 10.1109/TPAMI.2022.3204527. Epub 2023 Apr 3.

Abstract

In recent years, advancements in machine learning (ML) techniques, in particular, deep learning (DL) methods have gained a lot of momentum in solving inverse imaging problems, often surpassing the performance provided by hand-crafted approaches. Traditionally, analytical methods have been used to solve inverse imaging problems such as image restoration, inpainting, and superresolution. Unlike analytical methods for which the problem is explicitly defined and the domain knowledge is carefully engineered into the solution, DL models do not benefit from such prior knowledge and instead make use of large datasets to predict an unknown solution to the inverse problem. Recently, a new paradigm of training deep models using a single image, named untrained neural network prior (UNNP) has been proposed to solve a variety of inverse tasks, e.g., restoration and inpainting. Since then, many researchers have proposed various applications and variants of UNNP. In this paper, we present a comprehensive review of such studies and various UNNP applications for different tasks and highlight various open research problems which require further research.

摘要

近年来,机器学习(ML)技术,特别是深度学习(DL)方法在解决逆成像问题方面取得了很大进展,其性能常常超过手工制作方法。传统上,解析方法一直被用于解决诸如图像恢复、图像修复和超分辨率等逆成像问题。与解析方法不同,解析方法中问题被明确界定,领域知识被精心设计到解决方案中,而深度学习模型无法从这类先验知识中受益,而是利用大型数据集来预测逆问题的未知解决方案。最近,一种使用单张图像训练深度模型的新范式,即未训练神经网络先验(UNNP)被提出来解决各种逆任务,例如恢复和修复。从那时起,许多研究人员提出了UNNP的各种应用和变体。在本文中,我们对这类研究以及针对不同任务的各种UNNP应用进行了全面综述,并突出了需要进一步研究的各种开放性研究问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验