MOMA:一种用于多组学数据解释和分类的多任务注意力学习算法。
MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification.
作者信息
Moon Sehwan, Lee Hyunju
机构信息
School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
出版信息
Bioinformatics. 2022 Apr 12;38(8):2287-2296. doi: 10.1093/bioinformatics/btac080.
MOTIVATION
Accurate diagnostic classification and biological interpretation are important in biology and medicine, which are data-rich sciences. Thus, integration of different data types is necessary for the high predictive accuracy of clinical phenotypes, and more comprehensive analyses for predicting the prognosis of complex diseases are required.
RESULTS
Here, we propose a novel multi-task attention learning algorithm for multi-omics data, termed MOMA, which captures important biological processes for high diagnostic performance and interpretability. MOMA vectorizes features and modules using a geometric approach and focuses on important modules in multi-omics data via an attention mechanism. Experiments using public data on Alzheimer's disease and cancer with various classification tasks demonstrated the superior performance of this approach. The utility of MOMA was also verified using a comparison experiment with an attention mechanism that was turned on or off and biological analysis.
AVAILABILITY AND IMPLEMENTATION
The source codes are available at https://github.com/dmcb-gist/MOMA.
SUPPLEMENTARY INFORMATION
Supplementary materials are available at Bioinformatics online.
动机
准确的诊断分类和生物学解释在生物学和医学中很重要,这两门学科都是数据丰富的科学。因此,整合不同的数据类型对于临床表型的高预测准确性是必要的,并且需要对复杂疾病的预后进行更全面的分析。
结果
在此,我们提出了一种用于多组学数据的新型多任务注意力学习算法,称为MOMA,它捕获重要的生物学过程以实现高诊断性能和可解释性。MOMA使用几何方法对特征和模块进行矢量化,并通过注意力机制关注多组学数据中的重要模块。使用关于阿尔茨海默病和癌症的公共数据进行的各种分类任务实验证明了该方法的卓越性能。通过与开启或关闭注意力机制的比较实验以及生物学分析,也验证了MOMA的效用。
可用性和实现
源代码可在https://github.com/dmcb-gist/MOMA获取。
补充信息
补充材料可在《生物信息学》在线获取。