Suppr超能文献

凝聚作用对于将聚磷酸钙纳米颗粒转化为生理活性状态的功能重要性。

Functional importance of coacervation to convert calcium polyphosphate nanoparticles into the physiologically active state.

作者信息

Müller Werner E G, Neufurth Meik, Lieberwirth Ingo, Wang Shunfeng, Schröder Heinz C, Wang Xiaohong

机构信息

ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany.

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.

出版信息

Mater Today Bio. 2022 Aug 21;16:100404. doi: 10.1016/j.mtbio.2022.100404. eCollection 2022 Dec.

Abstract

Inorganic polyphosphates (polyP) are of increasing medical interest due to their unprecedented ability to exhibit both morphogenetic and ATP-delivering properties. However, these polymers are only physiologically active in the coacervate state, but not as amorphous nanoparticles (NP), the storage form of the polymer. Little is known about the mechanism of formation and interconversion of these two distinct polyP phases in the presence of metal ions. Based on in silico simulation studies, showing a differential clustering of polyP and calcium ions, the pH-dependent NP and coacervate formation of polyP was examined experimentally. Turbidimetric studies showed that Ca-polyP coacervate formation at pH 7 is a slow process compared to NP formation at pH 10. In FTIR spectra, the asymmetric stretching vibration signal of the internal (PO) units, which is present in the Ca-polyP coacervate formed at pH 7, disappears in the NP formed at pH 10 using the conventional method (dropping of a CaCl solution into a Na-polyP solution). Surprisingly, when reversing the procedure, adding Na-polyP to CaCl, a coacervate is obtained at both pH 7 and pH 10, as confirmed by SEM and FTIR analyses. The (PO) signal also disappears when Ca-polyP-NP are exposed to peptides, leading to the transformation of the NP into the coacervate phase. From these results, a mechanistic model of pH-dependent coacervate and NP formation is proposed that considers not only electrostatic ion-ion but also ion-dipole interactions. Functional studies revealed a delayed polyP release kinetics for Ca-polyP-NP embedded in a hydrogel due to NP/coacervate conversion. Human A549 epithelial cells grown on the coacervate show increased proliferation and ATP production compared to cells cultured on particulate polyP. Ca-polyP NP taken up by endocytosis undergo intracellular coacervate transformation. Understanding the differential expression of the two polyP phases is of functional importance for the potential therapeutic application of this physiological, regeneratively active polymer.

摘要

无机多聚磷酸盐(polyP)因其展现出形态发生和提供ATP特性的前所未有的能力而在医学上受到越来越多的关注。然而,这些聚合物仅在凝聚态下具有生理活性,而作为聚合物的储存形式——无定形纳米颗粒(NP)时则不然。关于在金属离子存在下这两种不同的多聚磷酸盐相的形成和相互转化机制,人们知之甚少。基于计算机模拟研究显示多聚磷酸盐和钙离子的差异聚集,对多聚磷酸盐的pH依赖性纳米颗粒和凝聚体形成进行了实验研究。比浊法研究表明,与在pH 10时形成纳米颗粒相比,在pH 7时形成钙-多聚磷酸盐凝聚体是一个缓慢的过程。在傅里叶变换红外光谱(FTIR)中,在pH 7形成的钙-多聚磷酸盐凝聚体中存在的内部(PO)单元的不对称拉伸振动信号,在使用传统方法(将氯化钙溶液滴入多聚磷酸钠溶液中)在pH 10形成的纳米颗粒中消失。令人惊讶的是,当颠倒操作程序,将多聚磷酸钠加入氯化钙中时,通过扫描电子显微镜(SEM)和傅里叶变换红外光谱分析证实,在pH 7和pH 10时均获得凝聚体。当钙-多聚磷酸盐-纳米颗粒暴露于肽时,(PO)信号也会消失,导致纳米颗粒转变为凝聚体相。基于这些结果,提出了一个pH依赖性凝聚体和纳米颗粒形成的机制模型,该模型不仅考虑了静电离子-离子相互作用,还考虑了离子-偶极相互作用。功能研究表明,由于纳米颗粒/凝聚体转化,嵌入水凝胶中的钙-多聚磷酸盐-纳米颗粒的多聚磷酸盐释放动力学延迟。与在颗粒状多聚磷酸盐上培养的细胞相比,在凝聚体上生长的人A549上皮细胞显示出增殖增加和ATP产生增加。通过内吞作用摄取的钙-多聚磷酸盐纳米颗粒会发生细胞内凝聚体转化。了解这两种多聚磷酸盐相的差异表达对于这种具有生理活性、再生活性的聚合物的潜在治疗应用具有功能重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ca6/9440442/0b733be66611/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验