Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, 100091 Beijing, China.
Environ Sci Technol. 2022 Sep 20;56(18):12975-12987. doi: 10.1021/acs.est.1c08832. Epub 2022 Sep 6.
Persistent microbial symbioses can confer greater fitness to their host under unfavorable conditions, but manipulating such beneficial interactions necessitates a mechanistic understanding of the consistently important microbiomes for the plant. Here, we examined the phylogenetic profiles and plant-beneficial traits of the core microbiota that consistently inhabits the rhizosphere of four divergent Cd hyperaccumulators and an accumulator. We evidenced the existence of a conserved core rhizosphere microbiota in each plant distinct from that in the non-hyperaccumulating plant. Members of and were the shared cores across hyperaccumulators and accumulators. Several keystone taxa in the rhizosphere networks were part of the core microbiota, the abundance of which was an important predictor of plant Cd accumulation. Furthermore, an inoculation experiment with synthetic communities comprising isolates belonging to the shared cores indicated that core microorganisms could facilitate plant growth and metal tolerance. Using RNA-based stable isotope probing, we discovered that abundant core taxa overlapped with active rhizobacteria utilizing root exudates, implying that the core rhizosphere microbiota assimilating plant-derived carbon may provide benefits to plant growth and host phenotype such as Cd accumulation. Our study suggests common principles underpinning hyperaccumulator-microbiome interactions, where plants consistently interact with a core set of microbes contributing to host fitness and plant performance. These findings lay the foundation for harnessing the persistent root microbiomes to accelerate the restoration of metal-disturbed soils.
持久的微生物共生关系可以在不利条件下赋予宿主更大的适应性,但要操纵这种有益的相互作用,就需要对始终对植物重要的微生物组有一个机械的理解。在这里,我们研究了一致栖息在四个不同 Cd 超积累植物和一个积累植物根际的核心微生物组的系统发育概况和植物有益特性。我们证明了每个植物的根际核心微生物组与非超积累植物的根际核心微生物组存在差异。 和 的成员是超积累植物和积累植物共有的核心。根际网络中的几个关键类群是核心微生物组的一部分,其丰度是植物 Cd 积累的重要预测因子。此外,用属于共享核心的分离物组成的合成群落进行接种实验表明,核心微生物可以促进植物生长和金属耐受性。通过基于 RNA 的稳定同位素探测,我们发现丰富的核心分类群与利用根系分泌物的活跃根细菌重叠,这意味着利用植物衍生碳的核心根际微生物组可能为植物生长和宿主表型(如 Cd 积累)提供益处。我们的研究表明,超积累植物-微生物相互作用的基本原则是一致的,植物始终与一组有助于宿主适应性和植物性能的核心微生物相互作用。这些发现为利用持久的根际微生物组来加速受金属干扰土壤的恢复奠定了基础。