Suppr超能文献

双肽功能化水凝胶可差异化控制牙周细胞功能并促进组织再生。

Dual peptide-functionalized hydrogels differentially control periodontal cell function and promote tissue regeneration.

机构信息

Translational Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, United States of America; Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, United States of America.

Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States of America; Department of Chemical Engineering, University of Rochester, Rochester, NY, United States of America; Materials Science Program, University Rochester, Rochester, NY, United States of America; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America.

出版信息

Biomater Adv. 2022 Oct;141:213093. doi: 10.1016/j.bioadv.2022.213093. Epub 2022 Aug 31.

Abstract

Restoring the tooth-supporting tissues lost during periodontitis is a significant clinical challenge, despite advances in both biomaterial and cell-based approaches. This study investigated poly(ethylene glycol) (PEG) hydrogels functionalized with integrin-binding peptides RGD and GFOGER for controlling periodontal ligament cell (PDLC) activity and promoting periodontal tissue regeneration. Dual presentation of RGD and GFOGER within PEG hydrogels potentiated two key PDLC functions, alkaline phosphatase (ALP) activity and matrix mineralization, over either peptide alone and could be tuned to differentially promote each function. Hydrogel matrix mineralization, fostered by high concentrations of GFOGER together with RGD, identified a PDLC phenotype with accelerated matrix adhesion formation and expression of cementoblast and osteoblast genes. In contrast, maximizing ALP activity through high RGD and low GFOGER levels resulted in minimal hydrogel mineralization, in part, through altered PDLC pyrophosphate regulation. Transplantation of PDLCs in hydrogels optimized for either outcome promoted cementum formation in rat periodontal defects; however, only hydrogels optimized for in vitro mineralization improved new bone formation. Overall, these results highlight the utility of engineered hydrogel systems for controlling PDLC functions and their promise for promoting periodontal tissue regeneration.

摘要

尽管在生物材料和基于细胞的方法方面都取得了进展,但在牙周炎期间丧失的牙齿支持组织的恢复仍然是一个重大的临床挑战。本研究调查了整合素结合肽 RGD 和 GFOGER 功能化的聚乙二醇(PEG)水凝胶,以控制牙周韧带细胞(PDLC)活性并促进牙周组织再生。PEG 水凝胶中 RGD 和 GFOGER 的双重呈现增强了碱性磷酸酶(ALP)活性和基质矿化这两种关键的 PDLC 功能,优于单独使用任何一种肽,并且可以通过不同的方式来促进每种功能。水凝胶基质矿化,由高浓度的 GFOGER 与 RGD 共同促进,确定了具有加速基质附着形成和表达牙骨质细胞和成骨细胞基因的 PDLC 表型。相比之下,通过高 RGD 和低 GFOGER 水平最大化 ALP 活性会导致最小的水凝胶矿化,部分原因是 PDLC 焦磷酸盐调节发生改变。在优化用于任一结果的水凝胶中移植 PDLC 可促进大鼠牙周缺损中的牙骨质形成;然而,只有优化用于体外矿化的水凝胶才能改善新骨形成。总的来说,这些结果强调了工程水凝胶系统在控制 PDLC 功能方面的实用性及其在促进牙周组织再生方面的潜力。

相似文献

8
Hydrogel Swelling-Mediated Strain Induces Cell Alignment at Dentin Interfaces.水凝胶溶胀介导的应变诱导牙本质界面处的细胞排列。
ACS Biomater Sci Eng. 2022 Aug 8;8(8):3568-3575. doi: 10.1021/acsbiomaterials.2c00566. Epub 2022 Jul 6.
10
Extracellular matrix-mediated differentiation of periodontal progenitor cells.细胞外基质介导的牙周祖细胞分化
Differentiation. 2009 Sep-Oct;78(2-3):79-90. doi: 10.1016/j.diff.2009.03.005. Epub 2009 May 9.

引用本文的文献

4
Evolution of branched peptides as novel biomaterials.支链肽作为新型生物材料的演变
J Mater Chem B. 2025 Feb 12;13(7):2226-2241. doi: 10.1039/d4tb01897d.

本文引用的文献

2
Delivery of Alkaline Phosphatase Promotes Periodontal Regeneration in Mice.碱性磷酸酶的递送促进小鼠牙周再生。
J Dent Res. 2021 Aug;100(9):993-1001. doi: 10.1177/00220345211005677. Epub 2021 Apr 10.
3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验