Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland.
Anal Chim Acta. 2022 Sep 15;1226:340259. doi: 10.1016/j.aca.2022.340259. Epub 2022 Aug 17.
Despite recent developments in separation techniques, the analysis of relatively small highly polar negatively charged analytes (e.g. small organic acids, phosphorylated sugars, and underivatized amino acids) remains challenging. Capillary electrophoresis coupled to mass spectrometry (CE-MS) has been included in the untargeted metabolomics toolbox, although mostly in positive polarity. The aim of this study was to assess the use of CE-MS to analyze highly polar and negatively charged metabolites at physiological levels without the need for derivatization. After a preliminary selection, conditions regarding CE (buffers, applied potential, injection time and applied pressure), electrospray parameters (sheath liquid flow, temperature and drying gas flow, nebulizer, and capillary voltage), and fragmentor voltage were optimized using a capillary coated with polyvinyl alcohol (PVA) for the metabolic profiling of anionic compounds compared to fused silica as the reference capillary. In addition, a database of 240 metabolites with two relative migration times (RMT) obtained against methionine sulfone and 2-morpholinoethanesulfonic acid (MES) as internal standards (IS) has been compiled. Finally, the optimized method has been used to characterize the metabolic profile of blood plasma in patients with non-small cell lung cancer (NSCLC). The identified compounds are mostly amino acids and their derivatives, carboxylic acids and organic compounds from the TCA cycle, and sugars and their phosphoderivates. In addition, we performed a comparative study to find significant differences between non-small cell lung cancer (NSCLC) vs non-cancer individuals, and squamous cell carcinoma (SCC) and adenocarcinoma (ADC) vs non-cancer individuals, respectively, searching for differences between the various types of NSCLC.
尽管分离技术最近有了新的进展,但分析相对较小的高极性带负电荷的分析物(例如,小分子有机酸、磷酸化糖和未衍生的氨基酸)仍然具有挑战性。毛细管电泳与质谱联用(CE-MS)已被纳入非靶向代谢组学工具包中,尽管主要应用于正相。本研究旨在评估 CE-MS 在无需衍生化的情况下分析生理水平下高极性和带负电荷的代谢物的用途。在初步筛选后,使用涂有聚乙烯醇(PVA)的毛细管(与参考毛细管熔融二氧化硅相比)对阴离子化合物进行代谢物分析,优化了 CE(缓冲液、施加的电势、注入时间和施加的压力)、电喷雾参数(鞘液流量、温度和干燥气流、雾化器和毛细管电压)和碎片电压的条件。此外,还编译了一个包含 240 种代谢物的数据库,这些代谢物具有相对于甲硫氨酸砜和 2-吗啉乙磺酸(MES)作为内标(IS)的两个相对迁移时间(RMT)。最后,优化后的方法用于表征非小细胞肺癌(NSCLC)患者的血浆代谢谱。鉴定出的化合物主要是氨基酸及其衍生物、羧酸和 TCA 循环中的有机化合物以及糖及其磷酸衍生物。此外,我们还进行了一项比较研究,以分别在非小细胞肺癌(NSCLC)与非癌症个体、鳞状细胞癌(SCC)与腺癌(ADC)与非癌症个体之间寻找显著差异,并寻找不同类型 NSCLC 之间的差异。