Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
Department of Psychology, University of Maryland, College Park, MD, USA.
Transl Psychiatry. 2022 Sep 6;12(1):367. doi: 10.1038/s41398-022-02134-2.
Medication and other therapies for psychiatric disorders show unsatisfying efficacy, in part due to the significant clinical/ biological heterogeneity within each disorder and our over-reliance on categorical clinical diagnoses. Alternatively, dimensional transdiagnostic studies have provided a promising pathway toward realizing personalized medicine and improved treatment outcomes. One factor that may influence response to psychiatric treatments is cognitive function, which is reflected in one's intellectual capacity. Intellectual capacity is also reflected in the organization and structure of intrinsic brain networks. Using a large transdiagnostic cohort (n = 1721), we sought to discover neuroimaging biomarkers by developing a resting-state functional connectome-based prediction model for a key intellectual capacity measure, Full-Scale Intelligence Quotient (FSIQ), across the diagnostic spectrum. Our cross-validated model yielded an excellent prediction accuracy (r = 0.5573, p < 0.001). The robustness and generalizability of our model was further validated on three independent cohorts (n = 2641). We identified key transdiagnostic connectome signatures underlying FSIQ capacity involving the dorsal-attention, frontoparietal and default-mode networks. Meanwhile, diagnosis groups showed disorder-specific biomarker patterns. Our findings advance the neurobiological understanding of cognitive functioning across traditional diagnostic categories and provide a new avenue for neuropathological classification of psychiatric disorders.
精神障碍的药物治疗和其他疗法的疗效并不令人满意,部分原因是每种疾病都存在显著的临床/生物学异质性,以及我们过度依赖分类的临床诊断。相比之下,跨诊断研究提供了一条有前途的途径,可以实现个性化医疗和改善治疗效果。可能影响精神疾病治疗反应的一个因素是认知功能,认知功能反映在一个人的智力能力上。智力能力也反映在内在大脑网络的组织和结构中。我们使用一个大型跨诊断队列(n=1721),通过开发基于静息状态功能连接组的预测模型,来寻找神经影像学生物标志物,以预测整个诊断谱中关键智力能力指标——全量表智商(FSIQ)。我们的交叉验证模型产生了优异的预测准确性(r=0.5573,p<0.001)。我们的模型在三个独立的队列(n=2641)上进一步验证了其稳健性和通用性。我们确定了涉及背侧注意、额顶叶和默认模式网络的 FSIQ 能力的关键跨诊断连接组特征。同时,不同的诊断组表现出特定于疾病的生物标志物模式。我们的研究结果增进了对认知功能在传统诊断类别中的神经生物学理解,并为精神障碍的神经病理学分类提供了新途径。