Department of Psychology, Yale University, New Haven, CT, USA.
Orygen, Parkville, Victoria, Australia.
Sci Adv. 2024 Nov 8;10(45):eadn1862. doi: 10.1126/sciadv.adn1862. Epub 2024 Nov 6.
A primary aim of computational psychiatry is to establish predictive models linking individual differences in brain functioning with symptoms. In particular, cognitive impairments are transdiagnostic, treatment resistant, and associated with poor outcomes. Recent work suggests that thousands of participants may be necessary for the accurate and reliable prediction of cognition, questioning the utility of most patient collection efforts. Here, using a transfer learning framework, we train a model on functional neuroimaging data from the UK Biobank to predict cognitive functioning in three transdiagnostic samples (ns = 101 to 224). We demonstrate prediction performance in all three samples comparable to that reported in larger prediction studies and a boost of up to 116% relative to classical models trained directly in the smaller samples. Critically, the model generalizes across datasets, maintaining performance when trained and tested across independent samples. This work establishes that predictive models derived in large population-level datasets can boost the prediction of cognition across clinical studies.
计算精神病学的主要目标之一是建立将大脑功能个体差异与症状联系起来的预测模型。特别是,认知障碍具有跨诊断、治疗抵抗和预后不良的特点。最近的研究表明,可能需要数千名参与者才能准确可靠地预测认知能力,这对大多数患者采集工作的实用性提出了质疑。在这里,我们使用迁移学习框架,在英国生物银行的功能神经影像学数据上训练一个模型,以预测三个跨诊断样本(n=101 到 224)的认知功能。我们证明了在所有三个样本中的预测性能与在更大的预测研究中报告的性能相当,并且相对于在较小样本中直接训练的经典模型,预测性能提高了高达 116%。关键的是,该模型可以在数据集之间进行泛化,在跨独立样本进行训练和测试时保持性能。这项工作确立了从大型人群数据集得出的预测模型可以提高跨临床研究的认知预测能力。