Suppr超能文献

将空间分辨多组学数据与COSMOS进行协同整合。

Cooperative integration of spatially resolved multi-omics data with COSMOS.

作者信息

Zhou Yuansheng, Xiao Xue, Dong Lei, Tang Chen, Xiao Guanghua, Xu Lin

机构信息

Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

出版信息

Nat Commun. 2025 Jan 2;16(1):27. doi: 10.1038/s41467-024-55204-y.

Abstract

Recent advancements in biological technologies have enabled the measurement of spatially resolved multi-omics data, yet computational algorithms for this purpose are scarce. Existing tools target either single omics or lack spatial integration. We generate a graph neural network algorithm named COSMOS to address this gap and demonstrated the superior performance of COSMOS in domain segmentation, visualization, and spatiotemporal map for spatially resolved multi-omics data integration tasks.

摘要

生物技术的最新进展使得对空间分辨的多组学数据进行测量成为可能,然而,用于此目的的计算算法却很稀缺。现有的工具要么针对单一组学,要么缺乏空间整合。我们生成了一种名为COSMOS的图神经网络算法来填补这一空白,并证明了COSMOS在空间分辨的多组学数据整合任务的域分割、可视化和时空映射方面具有卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c48/11696235/18eb72cae462/41467_2024_55204_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验