Moreno-Chicano Tadeo, Carey Leiah M, Axford Danny, Beale John H, Doak R Bruce, Duyvesteyn Helen M E, Ebrahim Ali, Henning Robert W, Monteiro Diana C F, Myles Dean A, Owada Shigeki, Sherrell Darren A, Straw Megan L, Šrajer Vukica, Sugimoto Hiroshi, Tono Kensuke, Tosha Takehiko, Tews Ivo, Trebbin Martin, Strange Richard W, Weiss Kevin L, Worrall Jonathan A R, Meilleur Flora, Owen Robin L, Ghiladi Reza A, Hough Michael A
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.
Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
IUCrJ. 2022 Jul 25;9(Pt 5):610-624. doi: 10.1107/S2052252522006418. eCollection 2022 Sep 1.
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
室温大分子晶体学能够在接近生理条件下确定蛋白质结构,允许蛋白质运动具有动态自由度,并能进行时间分辨研究。对于对辐射损伤高度敏感的金属酶而言,此类室温实验可能会带来挑战,包括金属中心的X射线还原速率增加和位点特异性辐射损伤伪像,以及在设计合适的样品输送和数据收集方法方面。使用不同晶体尺寸和光源测量的结构进行比较也可能存在问题。在本研究中,描述并比较了使用几种室温晶体结构测定方法获得的多功能球蛋白——脱卤过氧化物酶B(DHP-B)的结构。在这里,使用中子、X射线自由电子激光脉冲、单色同步辐射和多色(劳厄)辐射光源从大单晶和多个微晶测量数据。这些方法在每个衍射图案的测量时间上跨越了18个数量级,在晶体体积上跨越了4个数量级。还展示了DHP-B的首个室温中子结构,从而能够明确识别氢的位置。中子数据被证明与串行飞秒晶体学数据互补,与标准低温晶体学相比,这两种方法都能提供不受X射线辐射损伤影响的结构。对这些室温方法的比较表明,它们在样品要求、数据收集时间以及辐射损伤可能性方面存在很大差异。关于DHP-B的结构和功能,尽管结果部分受到基础结构差异的限制,但获得了关于活性位点残基质子化状态的新信息,这可能会为DHP-B的未来研究提供指导。