School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
Jiangsu Provincial Land Survey and Planning Institute, Nanjing 210093, China.
Comput Math Methods Med. 2022 Aug 28;2022:9300278. doi: 10.1155/2022/9300278. eCollection 2022.
With the development of China's social economy as well as the accelerating urbanization construction and the expanding scale of cities, the integration of land use and urban land classification based on land use spatial planning has become an important task for the sustainable development of China at present. Land use spatial classification planning is the basic basis for all kinds of development and protection construction activities, and government land use spatial planning at all levels plays an important role in implementing major national, provincial, and municipal strategies and promoting the rational and effective use of land use space. By briefly describing the spatial classification of land use and analyzing the idea of systematic integration of land use, this paper provides guidance and reference for exploring the construction of urban land use classification under land use spatial planning, aiming to improve the classification system of land use spatial planning. A neural network-based land use classification algorithm is proposed for the problems of few labeled samples of remote sensing images with high spatial resolution and feature deformation due to sensor height changes in land use spatial classification planning. By multiscale adaptive fusion of multiple convolutional layer features, the impact of feature deformation on classification accuracy is reduced. To further improve the classification accuracy, the depth features extracted from the pretraining network are used to pretrain the multiscale feature fusion part and the fully connected layer, and the whole network is fine-tuned using the augmented dataset. The experimental results show that the adaptive fusion method improves the fusion effect and effectively improves the accuracy of land use spatial classification planning.
随着中国社会经济的发展以及城市化建设的加速和城市规模的扩大,基于土地利用空间规划的土地利用与城市土地分类的融合已成为当前中国可持续发展的重要任务。土地利用空间分类规划是各类开发保护建设活动的基本依据,各级政府土地利用空间规划在落实国家、省、市重大战略和促进土地利用空间合理有效利用方面发挥着重要作用。本文通过简要描述土地利用的空间分类,并分析土地利用系统综合的理念,为探索土地利用空间规划下的城市土地利用分类建设提供指导和参考,旨在完善土地利用空间规划的分类体系。针对土地利用空间分类规划中高分辨率遥感图像因传感器高度变化导致的土地利用样本少且特征变形的问题,提出了一种基于神经网络的土地利用分类算法。通过多尺度自适应融合多个卷积层特征,减少了特征变形对分类精度的影响。为了进一步提高分类精度,利用预训练网络提取的深度特征对多尺度特征融合部分和全连接层进行预训练,并用扩充数据集对整个网络进行微调。实验结果表明,自适应融合方法提高了融合效果,有效提高了土地利用空间分类规划的精度。