Suppr超能文献

调控金属蛋白-金属有机框架中中孔限域单原子的配位环境用于高效生物催化。

Regulating the Coordination Environment of Mesopore-Confined Single Atoms from Metalloprotein-MOFs for Highly Efficient Biocatalysis.

机构信息

School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia.

Australian Synchrotron, ANSTO, Clayton, Victoria, 3168, Australia.

出版信息

Adv Mater. 2022 Nov;34(44):e2205674. doi: 10.1002/adma.202205674. Epub 2022 Oct 3.

Abstract

Single-atom catalysts (SACs) exhibit unparalleled atomic utilization and catalytic efficiency, yet it is challenging to modulate SACs with highly dispersed single-atoms, mesopores, and well-regulated coordination environment simultaneously and ultimately maximize their catalytic efficiency. Here, a generalized strategy to construct highly active ferric-centered SACs (Fe-SACs) is developed successfully via a biomineralization strategy that enables the homogeneous encapsulation of metalloproteins within metal-organic frameworks (MOFs) followed by pyrolysis. The results demonstrate that the constructed metalloprotein-MOF-templated Fe-SACs achieve up to 23-fold and 47-fold higher activity compared to those using metal ions as the single-atom source and those with large mesopores induced by Zn evaporation, respectively, as well as up to a 25-fold and 1900-fold higher catalytic efficiency compared to natural enzymes and natural-enzyme-immobilized MOFs. Furthermore, this strategy can be generalized to a variety of metal-containing metalloproteins and enzymes. The enhanced catalytic activity of Fe-SACs benefits from the highly dispersed atoms, mesopores, as well as the regulated coordination environment of single-atom active sites induced by metalloproteins. Furthermore, the developed Fe-SACs act as an excellent and effective therapeutic platform for suppressing tumor cell growth. This work advances the development of highly efficient SACs using metalloproteins-MOFs as a template with diverse biotechnological applications.

摘要

单原子催化剂 (SACs) 具有无与伦比的原子利用率和催化效率,但同时调节具有高度分散的单原子、中孔和良好调节的配位环境的 SACs 并最大限度地提高其催化效率是具有挑战性的。在这里,通过一种生物矿化策略成功开发了一种构建高活性铁中心 SACs (Fe-SACs) 的通用策略,该策略能够使金属蛋白酶均匀封装在金属有机骨架 (MOFs) 中,然后进行热解。结果表明,所构建的金属蛋白酶-MOF 模板化 Fe-SACs 的活性比使用金属离子作为单原子源的 SACs 高 23 倍和 47 倍,比通过 Zn 蒸发诱导的大介孔的 SACs 高 25 倍和 1900 倍,比天然酶和天然酶固定化 MOFs 的催化效率高 25 倍和 1900 倍。此外,该策略可以推广到多种含金属的金属蛋白酶和酶。Fe-SACs 的增强催化活性受益于高度分散的原子、中孔以及金属蛋白酶诱导的单原子活性位点的调节配位环境。此外,所开发的 Fe-SACs 作为一种出色且有效的治疗平台,可用于抑制肿瘤细胞生长。这项工作推进了使用金属蛋白酶-MOF 作为模板的高效 SACs 的发展,具有广泛的生物技术应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验