Suppr超能文献

Coronary circulatory pressure gradients.

作者信息

Klassen G A, Armour J A, Garner J B

出版信息

Can J Physiol Pharmacol. 1987 Apr;65(4):520-31. doi: 10.1139/y87-089.

Abstract

The pressure gradients of the canine coronary circulation were measured in 37 dogs during control and following eight interventions: left stellate ganglion or left vagosympathetic trunk stimulation, as well as isoproterenol, acetylcholine, noradrenaline, adenosine, phenylephrine, or adrenaline infusions. During control, pressure gradients in the epicardial coronary arteries (measured from the aorta to coronary artery branch) were 15.2 +/- 1 mmHg (1 mmHg (1 mmHg = 133.32 Pa) during systole and 10.6 +/- 1.5 mmHg during diastole. Adrenaline increased this systolic gradient, while acetylcholine and phenylephrine decreased it. In contrast, the pressure gradients in the small coronary arteries (from the branch of an epicardial artery to the pressure in an obstructed coronary artery) were 56 +/- 1.3 mmHg during systole and 63.7 +/- 1.3 mmHg during diastole. These gradients were increased by phenylephrine during both systole and diastole, noradrenaline and adrenaline during diastole and decreased by isoproterenol (systolic), left vagosympathetic trunk stimulation (diastolic), acetylcholine (systolic and diastolic), and adenosine (diastolic). The microcirculation and small vein gradients during control were 16.4 +/- 1.2 mmHg during systole and 8.5 +/- 0.8 mmHg during diastole. Decreases in this gradient were produced by isoproterenol, acetylcholine, and adenosine during systole and adenosine during diastole. These observations are consistent with the concept that the coronary circulation has considerable regulatory capacity in all of its component parts. Specifically, epicardial arteries appear to function as both conduits and as resistance vessels, small arteries as major resistance vessels, and the microcirculation and small veins as both capacitors and resistors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验