Suppr超能文献

细胞牵引力在解析核力学中的作用。

The role of cellular traction forces in deciphering nuclear mechanics.

作者信息

Joshi Rakesh, Han Seong-Beom, Cho Won-Ki, Kim Dong-Hwee

机构信息

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.

出版信息

Biomater Res. 2022 Sep 8;26(1):43. doi: 10.1186/s40824-022-00289-z.

Abstract

Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.

摘要

在生理和病理条件下,细胞在黏附和迁移过程中施加于细胞外基质(ECM)的力不仅调节细胞的整体形态,还影响核变形。核变形可改变基因表达、核膜完整性、核与细胞骨架的连接、染色质结构,在某些情况下还会影响DNA损伤反应。尽管核变形是由从ECM到细胞核的力传递引起的,但细胞内细胞器在力传递中的作用仍不清楚,是一个具有挑战性的研究领域。为了阐明核力学,必须了解各种因素,如合适的生物材料特性、加工路线、细胞力测量技术以及核力的微操纵。在本综述的初始阶段,我们重点关注了各种工程生物材料(天然和合成细胞外基质)及其制造路线,以及模拟肿瘤微环境所需的特性。此外,我们讨论了用于测量细胞黏附和迁移过程中产生的细胞牵引力的工具原理,随后介绍了最近开发的测量核力学的技术。在本综述的最后阶段,我们概述了牵引力显微镜(TFM)的原理、牵引力重塑中的挑战、微珠位移跟踪算法、从微珠运动进行数据转换以及将二维TFM扩展到多尺度TFM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d5b/9461125/06a007229639/40824_2022_289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验