Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
Biomed Pharmacother. 2022 Sep;153:113440. doi: 10.1016/j.biopha.2022.113440. Epub 2022 Jul 20.
Glioblastoma (GBM) remains the most frequently diagnosed primary malignant brain cancer in adults. Despite recent progress in understanding the biology of GBM, the clinical outcome for patients remains poor, with a median survival of approximately one year after diagnosis. One factor contributing to failure in clinical trials is the fact that traditional models used in GBM drug discovery poorly recapitulate patient tumors. Previous studies have shown that monensin (MON) analogs, namely esters and amides on C-26 were potent towards various types of cancer cell lines. In the present study we have investigated the activity of these molecules in GBM organoids, as well as in a host:tumor organoid model. Using a mini-ring cell viability assay we have identified seven analogs (IC = 91.5 ± 54.4-291.7 ± 68.8 nM) more potent than parent MON (IC = 612.6 ± 184.4 nM). Five of these compounds induced substantial DNA fragmentation in GBM organoids, suggestive of apoptotic cell death. The most active analog, compound 1, significantly reduced GBM cell migration, induced PARP degradation, diminished phosphorylation of STAT3, Akt and GSK3β, increased ɣH2AX signaling and upregulated expression of the autophagy associated marker LC3-II. To investigate the activity of MON and compound 1 in a tumor microenvironment, we developed human cerebral organoids (COs) from human induced pluripotent stem cells (iPSCs). The COs showed features of early developing brain such as multiple neural rosettes with a proliferative zone of neural stem cells (Nestin+), neurons (TUJ1 +), primitive ventricular system (SOX2 +/Ki67 +), intermediate zone (TBR2 +) and cortical plate (MAP2 +). In order to generate host:tumor organoids, we co-cultured RFP-labeled U87MG cells with fully formed COs. Compound 1 and MON reduced U87MG tumor size in the COs after four days of treatment and induced a significant reduction of PARP expression. These findings highlight the therapeutic potential of MON analogs towards GBM and support the application of organoid models in anti-cancer drug discovery.
胶质母细胞瘤(GBM)仍然是成年人中最常见的原发性恶性脑癌。尽管在了解 GBM 生物学方面取得了最近的进展,但患者的临床预后仍然很差,诊断后中位生存期约为一年。导致临床试验失败的一个因素是,GBM 药物发现中使用的传统模型不能很好地重现患者肿瘤。先前的研究表明,莫能菌素(MON)类似物,即 C-26 上的酯和酰胺,对各种类型的癌细胞系具有很强的活性。在本研究中,我们研究了这些分子在 GBM 类器官以及宿主:肿瘤类器官模型中的活性。使用微型环细胞活力测定法,我们鉴定出七种类似物(IC = 91.5 ± 54.4-291.7 ± 68.8 nM)比母体 MON(IC = 612.6 ± 184.4 nM)更有效。其中五种化合物在 GBM 类器官中诱导了大量的 DNA 片段化,提示细胞凋亡。最活跃的类似物化合物 1 显著降低了 GBM 细胞的迁移,诱导了 PARP 降解,减少了 STAT3、Akt 和 GSK3β 的磷酸化,增加了 γH2AX 信号,并上调了自噬相关标志物 LC3-II 的表达。为了研究 MON 和化合物 1 在肿瘤微环境中的活性,我们从人诱导多能干细胞(iPSC)中开发了人脑类器官(COs)。COs 表现出早期发育大脑的特征,如具有神经干细胞(Nestin+)增殖区的多个神经玫瑰体、神经元(TUJ1+)、原始脑室系统(SOX2+/Ki67+)、中间区(TBR2+)和皮质板(MAP2+)。为了生成宿主:肿瘤类器官,我们将 RFP 标记的 U87MG 细胞与完全形成的 CO 共培养。化合物 1 和 MON 在治疗四天后减少了 CO 中 U87MG 肿瘤的大小,并显著降低了 PARP 的表达。这些发现强调了 MON 类似物对 GBM 的治疗潜力,并支持在抗癌药物发现中应用类器官模型。