Suppr超能文献

基于 HFACS-CM-SEM-SD 的深部煤矿工人不安全行为综合评价

Comprehensive Evaluation of Deep Coal Miners' Unsafe Behavior Based on HFACS-CM-SEM-SD.

机构信息

School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, China.

出版信息

Int J Environ Res Public Health. 2022 Aug 29;19(17):10762. doi: 10.3390/ijerph191710762.

Abstract

The unsafe behavior of miners seriously affects the safety of deep mining. A comprehensive evaluation of miners' unsafe behavior in deep coal mines can prevent coal mine accidents. This study combines HFACS-CM, SEM, and SD models to evaluate miners' unsafe behaviors in deep coal mining. First, the HFACS-CM model identifies the risk factors affecting miners' unsafe behavior in deep coal mines. Second, SEM was used to analyze the interaction between risk factors and miners' unsafe behavior. Finally, the SD model was used to simulate the sensitivity of each risk factor to miners' unsafe behavior to explore the best prevention and control strategies for unsafe behavior. The results showed that (1) environmental factors, organizational influence, unsafe supervision, and unsafe state of miners are the four main risk factors affecting the unsafe behavior of miners in deep coal mines. Among them, the unsafe state of miners is the most critical risk factor. (2) Environmental factors, organizational influence, unsafe supervision, and the unsafe state of miners have both direct and indirect impacts on unsafe behaviors, and their immediate effects are far more significant than their indirect influence. (3) Environmental factors, organizational influence, and unsafe supervision positively impact miners' unsafe behavior through the mediating effect of miners' unsafe states. (4) Mental state, physiological state, business abilities, resource management, and organizational climate were the top five risk factors affecting miners' unsafe behaviors. Taking measures to improve the adverse environmental factors, strengthening the organization's supervision and management, and improving the unsafe state of miners can effectively reduce the risk of miners' unsafe behavior in deep coal mines. This study provides a new idea and method for preventing and controlling the unsafe behavior of miners in deep coal mines.

摘要

矿工的不安全行为严重影响深部开采的安全。对深部煤矿矿工不安全行为进行综合评价,可以预防煤矿事故。本研究结合 HFACS-CM、SEM 和 SD 模型,对深部煤矿矿工的不安全行为进行评价。首先,HFACS-CM 模型确定了影响深部煤矿矿工不安全行为的风险因素。其次,利用 SEM 分析了风险因素与矿工不安全行为之间的相互作用。最后,利用 SD 模型模拟了各风险因素对矿工不安全行为的灵敏度,以探讨不安全行为的最佳预防和控制策略。结果表明:(1)环境因素、组织影响、不安全监督和矿工不安全状态是影响深部煤矿矿工不安全行为的四个主要风险因素。其中,矿工的不安全状态是最关键的风险因素。(2)环境因素、组织影响、不安全监督和矿工的不安全状态对不安全行为既有直接影响,也有间接影响,其直接影响远大于间接影响。(3)环境因素、组织影响和不安全监督通过矿工不安全状态的中介效应对矿工的不安全行为产生正向影响。(4)心理状态、生理状态、业务能力、资源管理和组织氛围是影响矿工不安全行为的前五个风险因素。采取措施改善不利的环境因素,加强组织的监督管理,改善矿工的不安全状态,可以有效降低深部煤矿矿工不安全行为的风险。本研究为预防和控制深部煤矿矿工的不安全行为提供了新的思路和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5938/9518040/f74411a2f1da/ijerph-19-10762-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验