Suppr超能文献

基于多跳连接的注意力 3D U-Net 脑肿瘤图像分割。

Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images.

机构信息

Department of IT Convergence Engineering, Gachon University, Sujeong-Gu, Seongnam-Si 461-701, Gyeonggi-Do, Korea.

Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-Si 461-701, Gyeonggi-Do, Korea.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6501. doi: 10.3390/s22176501.

Abstract

Among researchers using traditional and new machine learning and deep learning techniques, 2D medical image segmentation models are popular. Additionally, 3D volumetric data recently became more accessible, as a result of the high number of studies conducted in recent years regarding the creation of 3D volumes. Using these 3D data, researchers have begun conducting research on creating 3D segmentation models, such as brain tumor segmentation and classification. Since a higher number of crucial features can be extracted using 3D data than 2D data, 3D brain tumor detection models have increased in popularity among researchers. Until now, various significant research works have focused on the 3D version of the U-Net and other popular models, such as 3D U-Net and V-Net, while doing superior research works. In this study, we used 3D brain image data and created a new architecture based on a 3D U-Net model that uses multiple skip connections with cost-efficient pretrained 3D MobileNetV2 blocks and attention modules. These pretrained MobileNetV2 blocks assist our architecture by providing smaller parameters to maintain operable model size in terms of our computational capability and help the model to converge faster. We added additional skip connections between the encoder and decoder blocks to ease the exchange of extracted features between the two blocks, which resulted in the maximum use of the features. We also used attention modules to filter out irrelevant features coming through the skip connections and, thus, preserved more computational power while achieving improved accuracy.

摘要

在使用传统和新型机器学习和深度学习技术的研究人员中,2D 医学图像分割模型很受欢迎。此外,由于近年来关于创建 3D 体积的研究数量众多,3D 容积数据最近变得更加容易获取。研究人员开始利用这些 3D 数据来创建 3D 分割模型,例如脑肿瘤分割和分类。由于 3D 数据可以提取更多关键特征,因此 3D 脑肿瘤检测模型在研究人员中越来越受欢迎。到目前为止,各种重要的研究工作都集中在 3D 版本的 U-Net 和其他流行模型(如 3D U-Net 和 V-Net)上,同时进行了更高级的研究工作。在这项研究中,我们使用了 3D 脑图像数据,并创建了一种新的架构,该架构基于 3D U-Net 模型,使用带有经济高效的预训练 3D MobileNetV2 块和注意力模块的多个跳过连接。这些预训练的 MobileNetV2 块通过提供较小的参数来帮助我们的架构,以维持可操作的模型大小,这是基于我们的计算能力的,同时有助于模型更快地收敛。我们在编码器和解码器块之间添加了额外的跳过连接,以方便两个块之间提取特征的交换,从而最大程度地利用了特征。我们还使用了注意力模块来过滤掉通过跳过连接传入的不相关特征,从而在提高准确性的同时节省了更多的计算能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c46e/9460422/6725cc41e1cf/sensors-22-06501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验