Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK.
Biosens Bioelectron. 2022 Nov 15;216:114633. doi: 10.1016/j.bios.2022.114633. Epub 2022 Aug 24.
The unmet clinical need for accurate point-of-care (POC) diagnostic tests able to discriminate bacterial from viral infection demands a solution that can be used both within healthcare settings and in the field, and that can also stem the tide of antimicrobial resistance. Our approach to solve this problem combine the use of host gene signatures with our Lab-on-a-Chip (LoC) technology enabling low-cost POC expression analysis to detect Infectious Disease. Transcriptomics have been extensively investigated as a potential tool to be implemented in the diagnosis of infectious disease. On the other hand, LoC technologies using ion-sensitive field-effect transistor (ISFET), in conjunction with isothermal chemistries, are offering a promising alternative to conventional amplification instruments, owing to their portable and affordable nature. Currently, the data analysis of ISFET arrays are restricted to established methods by averaging the output of every sensor to give a single time-series. This simple approach makes unrealistic assumptions, leading to insufficient performance for applications that require accurate quantification such as Host-Transcriptomics. In order to reliably quantify transcripts on our LoC platform enabling the classification of infectious disease on-chip, we propose a novel data-driven algorithm for extracting time-to-positive values from ISFET arrays. The algorithm proposed correctly outputs a time-to-positive for all the reactions, with a high correlation to RT-qLAMP (0.85, R = 0.98, p < 0.01), resulting in a classification accuracy of 100% (CI, 95-100%). This work aims to bridge the gap between translating assays from microarray analysis to ISFET arrays providing benefits on tackling infectious disease and diagnostic testing in hard-to-reach areas of the world.
对于能够区分细菌感染和病毒感染的准确即时(POC)诊断测试,目前存在未满足的临床需求,这需要一种既能在医疗环境中使用,也能在现场使用的解决方案,并且还能遏制抗菌药物耐药性的解决方案。我们解决此问题的方法是结合使用宿主基因特征和我们的芯片实验室(LoC)技术,从而能够进行低成本的 POC 表达分析,以检测传染病。转录组学已被广泛研究,作为一种用于传染病诊断的潜在工具。另一方面,使用离子敏场效应晶体管(ISFET)的 LoC 技术与等温化学相结合,由于其便携性和经济性,为传统的扩增仪器提供了一种很有前途的替代方案。目前,ISFET 阵列的数据分析仅限于通过对每个传感器的输出进行平均来给出单个时间序列的现有方法。这种简单的方法做出了不切实际的假设,导致对于需要准确量化的应用(如宿主转录组学)性能不足。为了在我们的 LoC 平台上可靠地定量转录物,从而能够在芯片上对传染病进行分类,我们提出了一种从 ISFET 阵列中提取阳性时间值的新的基于数据驱动的算法。所提出的算法正确地为所有反应输出阳性时间,与 RT-qLAMP 的相关性很高(0.85,R = 0.98,p < 0.01),从而导致分类准确率为 100%(置信区间,95-100%)。这项工作旨在弥合将微阵列分析中的测定法转化为 ISFET 阵列的差距,从而为解决传染病和诊断测试在世界上难以到达的地区提供益处。