Suppr超能文献

一种用于联合配准和重建病变图像的深度网络。

A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.

作者信息

Han Xu, Shen Zhengyang, Xu Zhenlin, Bakas Spyridon, Akbari Hamed, Bilello Michel, Davatzikos Christos, Niethammer Marc

机构信息

Department of Computer Science, UNC Chapel Hill, Chapel Hill, NC, USA.

Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.

Abstract

Registration of images with pathologies is challenging due to tissue appearance changes and missing correspondences caused by the pathologies. Moreover, mass effects as observed for brain tumors may displace tissue, creating larger deformations over time than what is observed in a healthy brain. Deep learning models have successfully been applied to image registration to offer dramatic speed up and to use surrogate information (e.g., segmentations) during training. However, existing approaches focus on learning registration models using images from healthy patients. They are therefore not designed for the registration of images with strong pathologies for example in the context of brain tumors, and traumatic brain injuries. In this work, we explore a deep learning approach to register images with brain tumors to an atlas. Our model learns an appearance mapping from images with tumors to the atlas, while simultaneously predicting the transformation to atlas space. Using separate decoders, the network disentangles the tumor mass effect from the reconstruction of quasi-normal images. Results on both synthetic and real brain tumor scans show that our approach outperforms cost function masking for registration to the atlas and that reconstructed quasi-normal images can be used for better longitudinal registrations.

摘要

由于病理导致的组织外观变化和对应关系缺失,对带有病变的图像进行配准具有挑战性。此外,如脑肿瘤所观察到的占位效应可能会使组织移位,随着时间推移产生比健康大脑中更大的变形。深度学习模型已成功应用于图像配准,以大幅提高速度并在训练期间使用替代信息(例如分割)。然而,现有方法侧重于使用来自健康患者的图像来学习配准模型。因此,它们并非设计用于例如在脑肿瘤和创伤性脑损伤情况下对具有严重病变的图像进行配准。在这项工作中,我们探索一种深度学习方法,将带有脑肿瘤的图像与图谱进行配准。我们的模型学习从带有肿瘤的图像到图谱的外观映射,同时预测到图谱空间的变换。通过使用单独的解码器,网络将肿瘤占位效应与准正常图像的重建区分开来。合成和真实脑肿瘤扫描的结果表明,我们的方法在与图谱配准时优于成本函数掩蔽,并且重建的准正常图像可用于更好的纵向配准。

相似文献

1
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
2
Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.
Neuroimage. 2018 Aug 1;176:431-445. doi: 10.1016/j.neuroimage.2018.04.073. Epub 2018 May 4.
3
Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies.
Int J Comput Assist Radiol Surg. 2022 Apr;17(4):699-710. doi: 10.1007/s11548-022-02577-4. Epub 2022 Mar 3.
4
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
5
Patient-Specific Registration of Pre-operative and Post-recurrence Brain Tumor MRI Scans.
Brainlesion. 2019;11383:105-114. doi: 10.1007/978-3-030-11723-8_10. Epub 2019 Jan 26.
6
Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
Med Phys. 2020 Nov;47(11):5619-5631. doi: 10.1002/mp.14441. Epub 2020 Oct 15.
7
MR-based synthetic CT generation using a deep convolutional neural network method.
Med Phys. 2017 Apr;44(4):1408-1419. doi: 10.1002/mp.12155. Epub 2017 Mar 21.
8
[Deformable Registration Network Reinforced by Joint Saliency Map].
Zhongguo Yi Liao Qi Xie Za Zhi. 2019 Nov 30;43(6):397-400. doi: 10.3969/j.issn.1671-7104.2019.06.002.
9
Modeling 4D Pathological Changes by Leveraging Normative Models.
Comput Vis Image Underst. 2016 Oct;151:3-13. doi: 10.1016/j.cviu.2016.01.007.
10
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.

引用本文的文献

1
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.

本文引用的文献

1
Region-specific Diffeomorphic Metric Mapping.
Adv Neural Inf Process Syst. 2019 Dec;32:1098-1108.
2
Metric Learning for Image Registration.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.
3
Networks for Joint Affine and Non-parametric Image Registration.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9.
4
Patient-Specific Registration of Pre-operative and Post-recurrence Brain Tumor MRI Scans.
Brainlesion. 2019;11383:105-114. doi: 10.1007/978-3-030-11723-8_10. Epub 2019 Jan 26.
5
VoxelMorph: A Learning Framework for Deformable Medical Image Registration.
IEEE Trans Med Imaging. 2019 Feb 4. doi: 10.1109/TMI.2019.2897538.
6
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
7
EFFICIENT REGISTRATION OF PATHOLOGICAL IMAGES: A JOINT PCA/IMAGE-RECONSTRUCTION APPROACH.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:10-14. doi: 10.1109/ISBI.2017.7950456. Epub 2017 Jun 19.
8
Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.
Neuroimage. 2018 Aug 1;176:431-445. doi: 10.1016/j.neuroimage.2018.04.073. Epub 2018 May 4.
10
Quicksilver: Fast predictive image registration - A deep learning approach.
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验