Yang Xixi, Niu Zhangming, Liu Yuansheng, Song Bosheng, Lu Weiqiang, Zeng Li, Zeng Xiangxiang
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1200-1210. doi: 10.1109/TCBB.2022.3205282. Epub 2023 Apr 3.
Prediction of the drug-target affinity (DTA) plays an important role in drug discovery. Existing deep learning methods for DTA prediction typically leverage a single modality, namely simplified molecular input line entry specification (SMILES) or amino acid sequence to learn representations. SMILES or amino acid sequences can be encoded into different modalities. Multimodality data provide different kinds of information, with complementary roles for DTA prediction. We propose Modality-DTA, a novel deep learning method for DTA prediction that leverages the multimodality of drugs and targets. A group of backward propagation neural networks is applied to ensure the completeness of the reconstruction process from the latent feature representation to original multimodality data. The tag between the drug and target is used to reduce the noise information in the latent representation from multimodality data. Experiments on three benchmark datasets show that our Modality-DTA outperforms existing methods in all metrics. Modality-DTA reduces the mean square error by 15.7% and improves the area under the precisionrecall curve by 12.74% in the Davis dataset. We further find that the drug modality Morgan fingerprint and the target modality generated by one-hot-encoding play the most significant roles. To the best of our knowledge, Modality-DTA is the first method to explore multimodality for DTA prediction.
药物-靶点亲和力(DTA)预测在药物发现中起着重要作用。现有的用于DTA预测的深度学习方法通常利用单一模态,即简化分子输入线输入规范(SMILES)或氨基酸序列来学习表征。SMILES或氨基酸序列可以被编码为不同的模态。多模态数据提供了不同类型的信息,对DTA预测具有互补作用。我们提出了Modality-DTA,一种用于DTA预测的新型深度学习方法,它利用了药物和靶点的多模态。应用一组反向传播神经网络来确保从潜在特征表征到原始多模态数据的重建过程的完整性。药物和靶点之间的标签用于减少多模态数据潜在表征中的噪声信息。在三个基准数据集上的实验表明,我们的Modality-DTA在所有指标上均优于现有方法。在Davis数据集中,Modality-DTA将均方误差降低了15.7%,并将精确率-召回率曲线下面积提高了12.74%。我们进一步发现,药物模态摩根指纹和通过独热编码生成的靶点模态发挥的作用最为显著。据我们所知,Modality-DTA是第一种探索多模态用于DTA预测的方法。