Suppr超能文献

约束反映系统稳定性在生物模型分析中的作用。

Utility of constraints reflecting system stability on analyses for biological models.

机构信息

Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan.

出版信息

PLoS Comput Biol. 2022 Sep 9;18(9):e1010441. doi: 10.1371/journal.pcbi.1010441. eCollection 2022 Sep.

Abstract

Simulating complex biological models consisting of multiple ordinary differential equations can aid in the prediction of the pharmacological/biological responses; however, they are often hampered by the availability of reliable kinetic parameters. In the present study, we aimed to discover the properties of behaviors without determining an optimal combination of kinetic parameter values (parameter set). The key idea was to collect as many parameter sets as possible. Given that many systems are biologically stable and resilient (BSR), we focused on the dynamics around the steady state and formulated objective functions for BSR by partial linear approximation of the focused region. Using the objective functions and modified global cluster Newton method, we developed an algorithm for a thorough exploration of the allowable parameter space for biological systems (TEAPS). We first applied TEAPS to the NF-κB signaling model. This system shows a damped oscillation after stimulation and seems to fit the BSR constraint. By applying TEAPS, we found several directions in parameter space which stringently determines the BSR property. In such directions, the experimentally fitted parameter values were included in the range of the obtained parameter sets. The arachidonic acid metabolic pathway model was used as a model related to pharmacological responses. The pharmacological effects of nonsteroidal anti-inflammatory drugs were simulated using the parameter sets obtained by TEAPS. The structural properties of the system were partly extracted by analyzing the distribution of the obtained parameter sets. In addition, the simulations showed inter-drug differences in prostacyclin to thromboxane A2 ratio such that aspirin treatment tends to increase the ratio, while rofecoxib treatment tends to decrease it. These trends are comparable to the clinical observations. These results on real biological models suggest that the parameter sets satisfying the BSR condition can help in finding biologically plausible parameter sets and understanding the properties of biological systems.

摘要

模拟由多个常微分方程组成的复杂生物模型可以帮助预测药理学/生物学反应;然而,它们通常受到可靠动力学参数的可用性的限制。在本研究中,我们旨在发现行为的特性,而无需确定动力学参数值的最佳组合(参数集)。关键思想是尽可能多地收集参数集。鉴于许多系统具有生物稳定性和弹性(BSR),我们专注于稳态附近的动力学,并通过对聚焦区域的部分线性逼近来为 BSR 制定目标函数。使用目标函数和改进的全局聚类牛顿法,我们开发了一种算法,用于全面探索生物系统的允许参数空间(TEAPS)。我们首先将 TEAPS 应用于 NF-κB 信号转导模型。该系统在刺激后显示出阻尼振荡,似乎符合 BSR 约束。通过应用 TEAPS,我们在参数空间中找到了几个方向,这些方向严格确定了 BSR 特性。在这些方向上,实验拟合的参数值包含在所获得的参数集中。花生四烯酸代谢途径模型被用作与药理学反应相关的模型。使用 TEAPS 获得的参数集模拟非甾体抗炎药的药理作用。通过分析获得的参数集的分布,部分提取了系统的结构特性。此外,模拟显示了前列腺素到血栓素 A2 比值的药物间差异,即阿司匹林治疗倾向于增加比值,而罗非昔布治疗倾向于降低比值。这些趋势与临床观察相符。这些真实生物模型的结果表明,满足 BSR 条件的参数集有助于找到生物学上合理的参数集并理解生物系统的特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f86/9491612/e1ec221e2491/pcbi.1010441.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验