Suppr超能文献

使用动态模型集合对信号通路进行数据驱动的逆向工程。

Data-driven reverse engineering of signaling pathways using ensembles of dynamic models.

作者信息

Henriques David, Villaverde Alejandro F, Rocha Miguel, Saez-Rodriguez Julio, Banga Julio R

机构信息

Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC, Vigo, Spain.

Centre of Biological Engineering, University of Minho, Braga, Portugal.

出版信息

PLoS Comput Biol. 2017 Feb 6;13(2):e1005379. doi: 10.1371/journal.pcbi.1005379. eCollection 2017 Feb.

Abstract

Despite significant efforts and remarkable progress, the inference of signaling networks from experimental data remains very challenging. The problem is particularly difficult when the objective is to obtain a dynamic model capable of predicting the effect of novel perturbations not considered during model training. The problem is ill-posed due to the nonlinear nature of these systems, the fact that only a fraction of the involved proteins and their post-translational modifications can be measured, and limitations on the technologies used for growing cells in vitro, perturbing them, and measuring their variations. As a consequence, there is a pervasive lack of identifiability. To overcome these issues, we present a methodology called SELDOM (enSEmbLe of Dynamic lOgic-based Models), which builds an ensemble of logic-based dynamic models, trains them to experimental data, and combines their individual simulations into an ensemble prediction. It also includes a model reduction step to prune spurious interactions and mitigate overfitting. SELDOM is a data-driven method, in the sense that it does not require any prior knowledge of the system: the interaction networks that act as scaffolds for the dynamic models are inferred from data using mutual information. We have tested SELDOM on a number of experimental and in silico signal transduction case-studies, including the recent HPN-DREAM breast cancer challenge. We found that its performance is highly competitive compared to state-of-the-art methods for the purpose of recovering network topology. More importantly, the utility of SELDOM goes beyond basic network inference (i.e. uncovering static interaction networks): it builds dynamic (based on ordinary differential equation) models, which can be used for mechanistic interpretations and reliable dynamic predictions in new experimental conditions (i.e. not used in the training). For this task, SELDOM's ensemble prediction is not only consistently better than predictions from individual models, but also often outperforms the state of the art represented by the methods used in the HPN-DREAM challenge.

摘要

尽管付出了巨大努力并取得了显著进展,但从实验数据推断信号网络仍然极具挑战性。当目标是获得一个能够预测模型训练期间未考虑的新扰动效应的动态模型时,这个问题尤其困难。由于这些系统的非线性性质、只能测量所涉及蛋白质及其翻译后修饰的一小部分这一事实,以及用于体外培养细胞、对其进行扰动并测量其变化的技术的局限性,该问题是不适定的。因此,普遍存在可识别性不足的问题。为了克服这些问题,我们提出了一种名为SELDOM(基于动态逻辑的模型集成)的方法,该方法构建基于逻辑的动态模型集成,将它们训练到实验数据,并将它们的个体模拟组合成一个集成预测。它还包括一个模型简化步骤,以修剪虚假相互作用并减轻过拟合。SELDOM是一种数据驱动的方法,因为它不需要关于系统的任何先验知识:作为动态模型支架的相互作用网络是使用互信息从数据中推断出来的。我们已经在一些实验和计算机模拟信号转导案例研究中测试了SELDOM,包括最近的HPN-DREAM乳腺癌挑战。我们发现,就恢复网络拓扑结构而言,其性能与最先进的方法相比具有很强的竞争力。更重要的是,SELDOM的效用超出了基本的网络推断(即揭示静态相互作用网络):它构建动态(基于常微分方程)模型,可用于在新的实验条件下(即未用于训练的条件)进行机理解释和可靠的动态预测。对于这项任务,SELDOM的集成预测不仅始终优于单个模型的预测,而且通常优于HPN-DREAM挑战中使用的方法所代表的当前技术水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4d1/5319798/1747bb4cf0d4/pcbi.1005379.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验