Suppr超能文献

基于多特征鼾声分割与深度学习的阻塞性睡眠呼吸暂停低通气综合征非接触式筛查

Non-Contact Screening of OSAHS Using Multi-Feature Snore Segmentation and Deep Learning.

作者信息

Xu Xi, Gan Yinghua, Yuan Xinpan, Cheng Ying, Zhou Lanqi

机构信息

Hunan Provincial Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou 412007, China.

School of Computer Science and Artificial Intelligence, Hunan University of Technology, Zhuzhou 412007, China.

出版信息

Sensors (Basel). 2025 Sep 3;25(17):5483. doi: 10.3390/s25175483.

Abstract

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a prevalent sleep disorder strongly linked to increased cardiovascular and metabolic risk. While prior studies have explored snore-based analysis for OSAHS, they have largely focused on either detection or classification in isolation. Here, we present a two-stage framework that integrates precise snoring event detection with deep learning-based classification. In the first stage, we develop an Adaptive Multi-Feature Fusion Endpoint Detection algorithm (AMFF-ED), which leverages short-time energy, spectral entropy, zero-crossing rate, and spectral centroid to accurately isolate snore segments following spectral subtraction noise reduction. Through adaptive statistical thresholding, joint decision-making, and post-processing, our method achieves a segmentation accuracy of 96.4%. Building upon this, we construct a balanced dataset comprising 6830 normal and 6814 OSAHS-related snore samples, which are transformed into Mel spectrograms and input into ERBG-Net-a hybrid deep neural network combining ECA-enhanced ResNet18 with bidirectional GRUs. This architecture captures both spectral patterns and temporal dynamics of snoring sounds. The experimental results demonstrate a classification accuracy of 95.84% and an F1 score of 94.82% on the test set, highlighting the model's robust performance and its potential as a foundation for automated, at-home OSAHS screening.

摘要

阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是一种常见的睡眠障碍,与心血管和代谢风险增加密切相关。虽然先前的研究已经探索了基于打鼾的OSAHS分析,但它们主要集中在单独的检测或分类上。在这里,我们提出了一个两阶段框架,将精确的打鼾事件检测与基于深度学习的分类相结合。在第一阶段,我们开发了一种自适应多特征融合端点检测算法(AMFF-ED),该算法利用短时能量、谱熵、过零率和谱质心,在谱减法降噪后准确分离打鼾段。通过自适应统计阈值处理、联合决策和后处理,我们的方法实现了96.4%的分割准确率。在此基础上,我们构建了一个平衡数据集,包括6830个正常打鼾样本和6814个与OSAHS相关的打鼾样本,将它们转换为梅尔频谱图,并输入到ERBG-Net中,这是一个将ECA增强的ResNet18与双向GRU相结合的混合深度神经网络。这种架构捕捉了打鼾声音的频谱模式和时间动态。实验结果表明,该模型在测试集上的分类准确率为95.84%,F1分数为94.82%,突出了该模型的强大性能及其作为家庭自动化OSAHS筛查基础的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4db/12431258/2cec8ee86788/sensors-25-05483-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验