Suppr超能文献

陀螺仪在基于惯性测量单元的单被试活动识别中是否具有附加价值?

Are Gyroscopes an Added Value in Leave-One-Subject-Out Activity Recognition with IMUs?

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2399-2402. doi: 10.1109/EMBC48229.2022.9871845.

Abstract

Inertial sensors have played a key role in the development of Human Activity Recognition (HAR) systems. Adding gyroscopes in HAR systems leads to increased battery and processing resources. Therefore, it is important to explore their added value compared with using accelerometers only. This study evaluates the added value of gyroscopes in activity recognition. Two public available datasets recorded by accelerometers and gyroscopes were studied. These datasets focus on multiple types of activities: UCI HAR dataset includes walking, walking upstairs, walking downstairs, sitting, standing, laying and WISDM dataset includes 18 hand-oriented and non-hand-oriented activities. Several machine learning models were applied to both datasets for activity recognition. Leave-one-subject-out cross-validation (LOSO) was applied to evaluate the models, where the training set and test set were from different subjects. For UCI HAR dataset, the multilayer perceptron (MLP) model obtained the highest f1-scores. Adding a gyroscope on the waist significantly improved the f1-scores of sitting and laying (both ). For WISDM dataset, the support vector machines (SVM) model obtained the highest f1-scores. The gyroscope on the wrist improved hand-oriented activities while the gyroscope in the pockets improved non-hand-oriented activities (all . The results showed the improvement for recognition performance by adding gyroscopes. However, the improvement was dependent on the type of activity and the mounting place of the gyroscope. Clinical relevance- Gyroscopes are common sensors for activity recognition in wearable healthcare systems. This study proves the added value by adding gyroscopes on different mounting places for recognition performance.

摘要

惯性传感器在人类活动识别 (HAR) 系统的发展中发挥了关键作用。在 HAR 系统中添加陀螺仪会增加电池和处理资源。因此,探索其与仅使用加速度计相比的附加价值非常重要。本研究评估了陀螺仪在活动识别中的附加价值。研究了两个使用加速度计和陀螺仪记录的公共可用数据集。这些数据集侧重于多种类型的活动:UCI HAR 数据集包括行走、上楼梯、下楼梯、坐、站、躺;WISDM 数据集包括 18 种手向和非手向活动。应用几种机器学习模型对两个数据集进行活动识别。采用留一法交叉验证 (LOSO) 来评估模型,其中训练集和测试集来自不同的受试者。对于 UCI HAR 数据集,多层感知机 (MLP) 模型获得了最高的 f1 分数。在腰部添加陀螺仪显著提高了坐姿和躺姿的 f1 分数(均为 )。对于 WISDM 数据集,支持向量机 (SVM) 模型获得了最高的 f1 分数。手腕上的陀螺仪提高了手向活动的识别性能,而口袋中的陀螺仪提高了非手向活动的识别性能(均为 )。结果表明,通过添加陀螺仪可以提高识别性能。然而,这种改进取决于活动的类型和陀螺仪的安装位置。临床相关性-陀螺仪是可穿戴式医疗保健系统中活动识别的常用传感器。本研究通过在不同的安装位置添加陀螺仪来证明识别性能的附加价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验