Suppr超能文献

基于感知的生成式对抗网络在 MRI 超分辨率中的应用。

Perceptual cGAN for MRI Super-resolution.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3035-3038. doi: 10.1109/EMBC48229.2022.9871832.

Abstract

Capturing high-resolution magnetic resonance (MR) images is a time consuming process, which makes it unsuitable for medical emergencies and pediatric patients. Low-resolution MR imaging, by contrast, is faster than its high-resolution counterpart, but it compromises on fine details necessary for a more precise diagnosis. Super-resolution (SR), when applied to low-resolution MR images, can help increase their utility by synthetically generating high-resolution images with little additional time. In this paper, we present an SR technique for MR images that is based on generative adversarial networks (GANs), which have proven to be quite useful in producing sharp-looking details in SR. We introduce a conditional GAN with perceptual loss, which is conditioned upon the input low-resolution image, which improves the performance for isotropic and anisotropic MRI super-resolution. Clinical Relevance- MR image super-resolution has the potential for improving image acquisition speed to save the time of the clinicians, while guaranteeing high-quality images.

摘要

捕获高分辨率磁共振(MR)图像是一个耗时的过程,因此不适合医疗急救和儿科患者。相比之下,低分辨率 MR 成像速度比高分辨率快,但它牺牲了更精确诊断所需的精细细节。超分辨率(SR)应用于低分辨率 MR 图像,可以通过合成生成具有少量额外时间的高分辨率图像来帮助提高其可用性。在本文中,我们提出了一种基于生成对抗网络(GAN)的 MR 图像 SR 技术,该技术在 SR 中生成清晰的细节方面表现出色。我们引入了一种具有感知损失的条件 GAN,该 GAN 基于输入的低分辨率图像,这提高了各向同性和各向异性 MRI 超分辨率的性能。临床相关性-MR 图像超分辨率有可能提高图像采集速度,从而为临床医生节省时间,同时保证高质量的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验